

PINS Document Number: EN010140/APP/7.6

Pursuant to: APFP Regulation 5(2)(q)

Transport Assessment

June 2024

A Planning Application by ENSO GREEN HOLDINGS D LIMITED

In respect of

Helios Renewable Energy Project, NORTH YORKSHIRE

Transport Assessment

June 2024

Document Management

© 2024 Transport Planning Associates Limited. All Rights Reserved.

This document has been prepared by Transport Planning Associates for the sole use of our client in accordance with generally accepted consultancy principles, the budget for fees and the terms of service agreed between Transport Planning Associates and our client. Any information provided by third parties and referred to herein has not been checked or verified by Transport Planning Associates, unless otherwise expressly stated in the document. No third parties may rely upon this document without the prior and express written agreement of Transport Planning Associates.

Document Review

	Status	Author	Checker	Approver	Date
01	Draft	AC	RR	JD	21 02 24
02	Draft	AC	RR	RR	21 03 24
03	Draft	AC	RR	RR	24 05 24
-	lssue				
А	Revision ^a				
В	Revision ^b				

Bristol

Cambridge London Oxford Welwyn Garden City Issued by:

Transport Planning Associates

25 King Street Bristol BS1 4PB

0117 925 9400 bristol@tpa.uk.com www.tpa.uk.com

b

а

Page

Contents

1	Introduction	1
2	Existing Context of the Site	4
3	Transport Policy and Guidance	13
4	The Proposed Development	19
5	Trip Generation	25
6	Construction Vehicle Trip Distribution	32
7	Abnormal Load Movements	34
8	Construction Period Management and Mitigation	36
9	Effect of the Development on the Local Highway Network	39
10	Cumulative Effects of the Proposed Development	42
11	Summary and Conclusions	46

List of Figures

- Figure 2.1 Highway Network
- Figure 2.2 Traffic Survey Locations
- Figure 2.3 Public Rights of Way
- Figure 4.1 Access and Vehicle Connection Locations
- Figure 6.1 Construction Vehicle Route

List of Appendices

- A Location Plan
- B Traffic Surveys
- C Personal Injury Accidents
- D Main Site Accesses
- E Field Connections
- F Cable Route Accesses
- G Stage One Road Safety Audit for Site Accesses

1 Introduction

- 1.1 This Transport Assessment ('TA') has been prepared by Transport Planning Associates ('TPA') on behalf of Enso Green Holdings D Limited (the 'Applicant') in relation to an application for a Development Consent Order ('DCO') for the Helios Renewable Energy Project (hereafter referred to as the 'Proposed Development').
- 1.2 The Proposed Development is situated within the jurisdiction of North Yorkshire Council (NYC) who act as the local planning authority and local highway authority.

The Proposed Development

- 1.3 The Proposed Development will comprise the construction, operation, maintenance, and decommissioning of a solar photovoltaic (PV) array electricity generating station and Battery Energy Storage System (BESS) with a total capacity exceeding 50 megawatts (MW), and export connection to the National Grid.
- 1.4 The Site consists of agricultural land covering an area of approximately 475ha. The Site is located to the west of the A1041 near to the villages of Camblesforth and Carlton.
- 1.5 A grid connection cable will connect the Site to the National Grid via the substation at Drax Power Station.
- 1.6 The Order Limits are shown in the **Location Plan** contained in **Appendix A**.

This Document

- 1.7 This TA provides an overview of the potential effects of the Proposed Development in transport terms. The TA has been prepared in accordance with the National Planning Practice Guidance (NPPG). It should be read in conjunction with Chapter 10 Transport and Access of the Environmental Statement (ES) [EN010140/APP/6.1.10]
- 1.8 Once Solar Farms are operational, they generate very few traffic movements on a day-to-day basis. The transport effects of the proposals are greater during the temporary construction phase and decommissioning phase. Therefore, the TA is supported by an **outline Construction Traffic** Management Plan (oCTMP) [EN010140/APP/6.3.5.2]. An **outline Decommissioning** Environmental Plan [EN010140/APP/6.3.5.3] is submitted with the ES. The decommissioning phase

is not expected to have a greater effect on the local highway network compared to the construction phase.

Consultation

- 1.9 An EIA Scoping Report was submitted to the Planning Inspectorate ('PINS') on 7th June 2022 [EN010140/APP/6.3.2.1]. PINS adopted its EIA Scoping Opinion [EN010140/APP/6.3.2.2] on 14th July 2022. Separately, a virtual meeting was held with a Transport and Development Engineer at NYC on 18th August 2022.
- 1.10 A Preliminary Environmental Impact Report (PEIR) was issued on 26th October 2023 for Statutory Consultation. Responses from statutory consultees, including NYC and National Highways were received in December 2023. Following this, a meeting was held with National Highways on 6th February 2024, and with transport officers at NYC on 12th February 2024.
- 1.11 Key themes that have been raised through the consultation process in relation to Transport and Access are as follows:
 - The location and form of the construction vehicle access points to the Site;
 - The suitability of the construction vehicle route to the Site;
 - The use and management of Public Rights of Way that operate through the Site; and
 - The cumulative effects of the Proposed Development on the local highway network.
- 1.12 Where appropriate, discussions with statutory consultees have informed the content of this TA and the **oCTMP [EN010140/APP/6.3.5.2].** All responses to statutory consultees are included within Table 10.4 the ES.

Report Structure

- 1.13 The remainder of this report is set out as follows:
 - Section 2 Describes the existing context of the Site;
 - Section 3 Sets out the relevant national and local polices;
 - Section 4 Sets out the Proposed Development proposals;
 - Section 5 Sets out the vehicle trip generation of the Proposed Development during the construction, operational and decommissioning phases;
 - Section 6 Distributes the vehicle trips on the local highway network;
 - Section 7 Sets out the process for Abnormal Load movements;
 - Section 8 Describes how the construction of the Proposed Development will be managed;
 - Section 9 Sets out the effects of the Proposed Development on the local highway network;

- Section 10 Assesses the cumulative effects of the Proposed Development on the local highway network; and
- Section 11 Provides a Summary and Conclusion.

2 Existing Context of the Site

2.1 This section summarises the existing context of the Site and its surrounding area with regard to transport and access.

Site Location

- 2.2 The Order Limits are shown in the **Location Plan** contained in **Appendix A**. The Site consists of agricultural land covering an area of approximately 475ha. A grid connection cable will route from the Site to the connection point at Drax Power Station.
- 2.3 The Site is located to the west of Camblesforth village. It is broadly bound by the A1041 to the northeast, Station Road at the south-east, Hirst Road to the south and the Trans Pennine Railway line to the west.

Highway Network

2.4 The strategic and local highway network surrounding the Order Limits is shown in **Figure 2.1** below and at the end of this report.

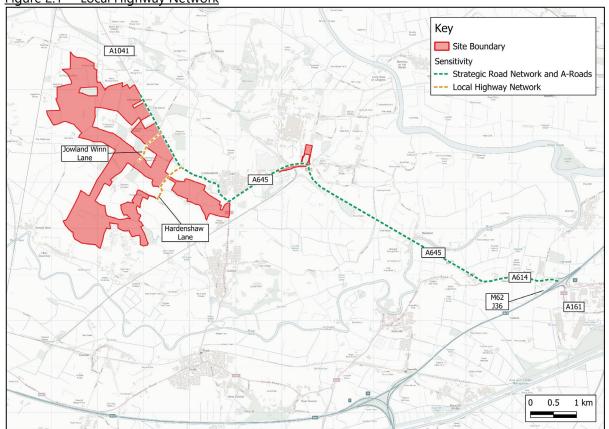
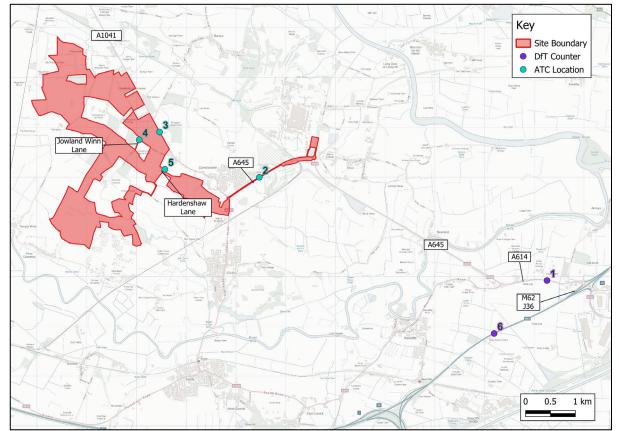


Figure 2.1 Local Highway Network

2.5 A description of the strategic and local highway network is set out below.

Strategic Road Network and A-Roads

- M62 The M62 is part of the Strategic Road Network managed by National Highways. It connects Liverpool and Hull via Manchester, Bradford, Leeds and Wakefield. Junction 36 of the M62 (Goole Interchange) connects to the A614 and forms a dumbbell roundabout.
- A614 The A614 is a two-way single carriageway road subject to a 60 miles per hour (mph) speed limit. The road extends from Junction 36 of the M62 motorway (Goole Interchange) and routes east where it joins the A645 via a three-arm roundabout;
- A645 The A645 is a two-way single carriageway road subject to a 60-mph speed limit. The road routes between the A614 and Drax before continuing to the south of Camblesforth to connect to the A1041;
- A1041 The A1041 is a two-way single carriageway road subject to a 60-mph speed limit. The road connects the village of Snaith, to the south of the Site, to Selby, to the north of the Site. The A1041 forms 'Station Road' and 'High Street' within the village of Carlton, to the south of the Site. On these parts of the A1041, the speed limit reduces to 30mph. There are several side junctions into local residential streets, and footways on both sides of the road.


Local Highway Network

- Jowland Winn Lane Jowland Winn Lane is rural in nature, connecting a private agricultural track to Chestercourt Lane. The lane allows for two-way traffic and is subject to the national speed limit, however, does not bear any road markings.
- Hardenshaw Lane Hardenshaw Lane connects south from the A1041 onto Sandwith Lane, which runs in an east to west alignment. The road is subject to a 40mph speed limit within the vicinity of the residential dwellings, increasing to the national speed limit thereafter.

Traffic Flows

2.6 Automatic Traffic Count (ATC) Surveys were undertaken on local roads surrounding the Site between 4th March 2022 and 10th March 2022. Traffic data for the A614 and M62, is taken from the Department for Transport (DfT) Road Traffic Statistics database. The location points of the surveys are shown in **Figure 2.2**.

Figure 2.2 Traffic Survey Locations

2.7 The raw data is shown in **Appendix B**. The average weekday two-way traffic counts for the main roads within the vicinity of the Site is set out in **Table 2.1**.

Ref	Link	Total Vehicles	HGV %*
1	A614	12,171	8%
2	A645	7,382	8%
3	A1041 (Bawtry Road)	12,207	6%
4	Jowland Winn Lane	50	6%
5	Hardenshaw Lane	104	2%
6	M62 near Junction 36	52,000	24%

Table 2.1 Baseline Traffic Flows – Average Day (24hr), Two-Way

*a vehicle is recorded as an HGV if it has a weight of more than 3.5 tonnes

2.8 Table 2.1 indicates that the 'A'-Roads in the area carry the most traffic, in particular the A614 and A1041. The local roads, namely Jowland Winn Lane and Hardenshaw Lane accommodate low levels of traffic over a daily period. HGV movement was recorded on all roads.

Personal Injury Collisions

- 2.9 Statistics showing Personal Injury Collisions (PIC) on the local road network within the Study Area have been obtained from North Yorkshire Council ('NYC') for the most recent five-year period up to and including May 2023. At the request of National Highways (NH), the M62 Junction 36 has been included. PICs records for this junction have been taken from the CrashMap database. The raw data is shown in **Appendix C**.
- 2.10 A breakdown of the accidents is shown in **Table 2.2**.

Table 2.2	Personal In	njury Accident Data
		5 5

Ref	Link	Slight ¹	Serious ²	Fatal ³	Total
1	A614	3	4	0	7
2	A645	10	1	0	11
3	A1041 (Bawtry Road)	6	0	0	6
4	Jowland Winn Lane	0	0	0	0
5	Hardenshaw Lane	0	0	0	0
6	M62 Junction 36	3	1	0	4

- 2.11 Table 2.2 indicates a total of 28 accidents within the Study Area. Of these, 22 resulted in slight injuries and 6 in serious injuries. No fatal injuries have occurred within the Study Area in the most recent five-year period.
- 2.12 Generally, collisions appear to be distributed throughout the Study Area and no specific highway safety issue is identified as a result.

Non-Motorised Users

- 2.13 The non-motorised features within the Study Area are summarised below:
 - Goole Interchange/A614 The Goole Interchange features a shared footway/cycleway alongside the westbound carriageway, which develops into a footway on the A614. This continues onto the A614 until the Glew services roundabout, where the footway/cycleway crosses onto the opposite side of the carriageway. After a short section, the path becomes a footway only, which continues along the whole of the A614 until the A645 roundabout;
 - A614 Rawcliffe Road the eastbound footway continues until the A614/A645 roundabout. The footways do not continue along the A645 until reaching the A645/Main Road/New Road roundabout;
 - A645 (W) After the A645/ Main Road/ New Road roundabout, footways are present along both sides of the carriageway for 500m until the westbound footway ends. The eastbound footway continues and links onto the A1041 at the roundabout. There are no cycling facilities on this section of the network; and
 - **A1041** On the A1041, the footway continues to route along the south-eastbound side of the A1041's carriageway. However, from the 'Council Houses' bus stop, the footway ends on the

¹ An injury of minor character such as a sprain

² An injury in which a person is detained in hospital

³ An accident where at least one person is killed

eastbound side and resumes on the westbound side. The westbound footway continues to route along the A1041 until ending west of the Black Dog Inn. The footways do not resume along the A1041 within the vicinity of the Site past this point.

Public Rights of Way

2.14 There are several Public Rights of Way (PRoWs) that run through or near to the Site or within the vicinity of the "Underground Cable Corridor'. These are shown in **Figure 2.3** below and at the end of this report.

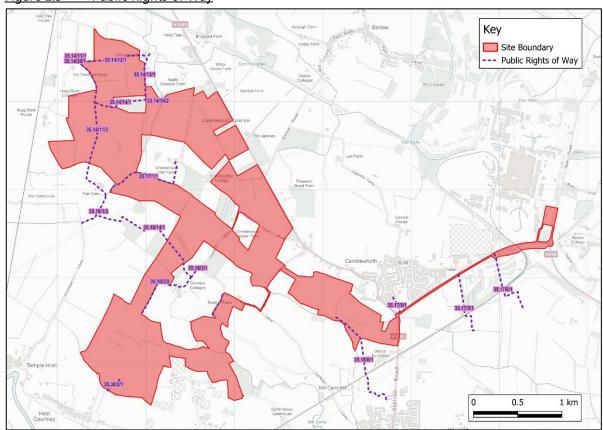


Figure 2.3 Public Rights of Way

2.15 The PRoWs that are within or near to the Order Limits are described in **Table 2.3**.

Table 2.3 Public Rights of Way

PROW	PROW Type	Route Description
35.14/8/3	Footpath	Routes from Hagg Bush House in a south-easterly direction to connect onto 35.14/9/3 to the west of Fair Oaks
35.14/9/3	Footpath	Routes east-west from 35.14/9/3 to 35.14/11/3
35.14/11/3	Footpath	Routes from the track by Fair Oaks up to where the track joins onto Hagg Bush Lane in the north
35.14/12/1	Footpath	Connects from 35.14/11/3 near Hagg Bush Lane and routes east and up through Primrose Hill to end on Common Lane
35.14/13/1	Footpath	Extends from Common Lane, approximately 50m east of 35.14/12/1, and routes south to the grove of woods to the south of Apple Blossom Farm
35.14/14/1	Footpath	Routes through the aforementioned grove of wood, connecting between 35.14/13/1 and 35.14/11/3
35.14/14/2	Footpath	Connects from 35.14/13/1, routes east and exits by the lake 200m east of the grove of woods
35.17/1/1	Footpath	Routes from the brook by Fair Oaks for approx. 400m before heading east and then north to connect onto Chestercourt Lane from Chestercourt Hall Farm
35.17/5/1	Footpath	Accessed from Drax Golf Club delivery access and continues south over the railway line
35.17/6/1	Footpath	Routes south from the A645 through fields and over the railway line to the west of 35.17/5/1
35.17/8/1	Footpath	Cuts through between Mill Lane of Camblesforth and onto the A645
35.18/1/2	Footpath	Connects from Common Lane and connects onto 35.14/11/3 by Fair Oaks
35.18/3/2	Footpath	Begins on Brick Lands Lane, approximately 1km north of Old Lane and routes northeast through Quosquo Cottages and onto Jowland Winn Lane
35.18/6/1	Footpath	Routes from Camilla Close to Claypit Lane (track) in a north- westerly direction
35.18/13/1	Bridleway	Bridleway that follows the track from Race Lane to Sandwith Lane in a north-south alignment
35.18/14/1	Footpath	Extends between Jowland Winn Lane, where 35.18/3/2 originates and extends northwest to connect onto 35.18/1/2
35.38/2/1	Footpath	Connects between Old Lane and Brick Lands Lane cutting through the field

Cycling

2.16 There is limited dedicated cycle infrastructure surrounding the Site within the Study Area; however, the National Cycle Network Route 62 does operate alongside Hirst Road, to the south of the Site, and along Common Lane to the east of the Site. National Cycle Network Route 62 connects Fleetwood in Lancashire with Selby in North Yorkshire. It forms the west and central sections of the Trans Pennine Trail, which is a long-distance path running from coast to coast across northern England.

Public Transport

Bus

2.17 The nearest bus stops with waiting facilities are located on the A1041. The east bound bus stop is situated 900m to the east of Hardenshaw Lane, and is referred to as 'Council Houses'. It features a dedicated bus layby and bus flag. The westbound stop is situated 850m east of the Hardenshaw Lane access and is referred to as 'Poplar Tree Farm'. It features a sheltered seating area with bus flag and timetable information. The stops are served by three services, these are summarised in **Table 2.4**.

Table 2.4	Summary	of Existing	Bus Services

Service	Approximate Frequency	Route Summary
2	One service per day	Newport – Howden – Camblesforth – Selby
8	Every 120 minutes	Drax – Camblesforth – Brayton – Selby
401	Every 60-90 minutes	Goole – Howden – Camblesforth – Selby

Rail

- 2.18 Snaith Railway Station is located approximately 4.8km south of Camblesforth. The railway station operates on the Pontefract Line, which runs between Leeds Railway Station to the west and Goole Railway Station to the east. There are only two services per day in each direction from Snaith Railway Station.
- 2.19 Selby Railway Station is located approximately 8km north of Camblesforth. Train destinations include York, Hull, London Kings Cross, and Liverpool Lime Street with services operating from the station at an approximate frequency of between 20 and 60 minutes.

Summary

- 2.20 The Site is in a suitable location for the Proposed Development in terms of transport. Whilst there is not a significant level of walking, cycling or public transport accessibility in the area, the operation of the Site generates very few trips. Through the CTMP, a Travel Plan will be prepared, including measures such as minibus provision and car sharing, to ensure construction worker can travel to the Site sustainable. This is discussed further in Section 8.
- 2.21 The Site is located near to the Strategic Road Network, and is connected by a number of A-class and local roads. This will help facilitate the movement of construction and decommissioning vehicles to and from the Site.

3 Transport Policy and Guidance

3.1 The proposals have been considered in the context of the following documents:

- National Policy Statement EN-1 (NPS EN-1) (designated January 2024);
- National Policy Statement EN-3 (NPS EN-3) (designated January 2024);
- National Policy Statement EN-5 (NPS EN-5) (designated January 2024);
- National Planning Policy Framework (December 2023);
- Selby District Council Core Strategy Local Plan (2013); and
- Selby District Local Plan Publication Version (2022).
- 3.2 Key text and policies for the documents are set out within this chapter of the TA.

National Policy Statement EN-1

3.3 Section 5.14 of the NPS EN-1 relates to the traffic and transport effects of electricity network infrastructure. It states that:

'the transport of materials, goods and personnel to and from a development during all project phases can have a variety of impacts on the surrounding transport infrastructure and potentially on connecting transport networks, for example through increased congestion. Impacts may include economic, social and environmental effects.

Environmental impacts may result particularly from trips generated on roads which may increase noise and air pollution as well as greenhouse gas emissions.

Disturbance caused by traffic and abnormal loads generated during the construction phase will depend on the scale and type of the proposal'.

3.4 For assessment purposes, paragraph 5.14.5 of the NPS EN-1 states that:

'if a project is likely to have significant transport implications, the applicant's ES (see Section 4.3) should include a transport appraisal. The DfT's Transport Analysis Guidance (TAG) and Welsh Governments WelTAG provides guidance on modelling and assessing the impacts of transport schemes'.

3.5 With regards to decision-making, paragraph 5.14.21 of the NPS EN-1 states that:

'The Secretary of State should only consider refusing development on highways grounds if there would be an unacceptable impact on highway safety, residual cumulative impacts on the road network would be severe, or it does not show how consideration has been given to the provision of adequate active public or shared transport access and provision'.

National Policy Statement EN-3

3.6 Section 2.10.120 of the NPS EN-3 relates to construction traffic impacts from solar PV developments. It states that:

> 'Modern solar farms are large sites that are mainly comprised of small structures that can be transported separately and constructed on-site, with developers designating a compound on-site for the delivery and assemblage of the necessary components.'

3.7 Paragraph 2.10.121 states:

'Many solar farms will be sited in areas served by a minor road network. Public perception of the construction phase of solar farm will derive mainly from the effects of traffic movements, which is likely to involve smaller vehicles than typical onshore energy infrastructure but may be more voluminous'.

3.8 For assessment purposes, the NPS EN-3 states that:

'Applicants should assess the various potential routes to the site for delivery of materials and components where the source of the materials is known at the time of the application and select the route that is the most appropriate. (paragraph 2.10.123)

••••

Applicants should ensure all sections of roads and bridges on the proposed delivery route can accommodate the weight and volume of the loads and width of vehicles. Although unlikely, where modifications to roads and/or bridges are required, these should be identified, and potential effects addressed in the ES. (paragraph 2.10.125)

Where a cumulative impact is likely because multiple energy infrastructure developments are proposing to use a common port and/or access route and pass through the same towns and villages, applicants should include a cumulative transport assessment as part of the ES. This should consider the impacts of abnormal traffic movements relating to the project in question in combination with those from any other relevant development. Consultation with the relevant local highways authorities is likely to be necessary'. (paragraph 2.10.126)

3.9 In terms of mitigation, the NPS EN-3 sets out the following:

'In some cases, the local highway authority may request that the Secretary of State impose controls on the number of vehicle movements to and from the solar farm site in a specified period during its construction and, possibly, on the routeing of such movements particularly by heavy vehicles'; (paragraph 2.10.139) 'Where the Secretary of State agrees that this is necessary, requirements could be imposed on development consent'; (paragraph 2.10.140)

'Where cumulative effects on the local road network or residential amenity are predicted from multiple solar farm developments, it may be appropriate for applicants for various projects to work together to ensure that the number of abnormal loads and deliveries are minimised, and the timings of deliveries are managed and coordinated to ensure that disruption to residents and other highway users is reasonably minimised'; (paragraph 2.10.141)

'It may also be appropriate for the highway authority to set limits for and coordinate these deliveries through active management of the delivery schedules through the abnormal load approval process'; (paragraph 2.10.142)

'Once consent for a scheme has been granted, applicants should liaise with the relevant local highway authority (or other coordinating body) regarding the start of construction and the broad timing of deliveries. Applicants may need to agree a planning obligation to secure appropriate measures, including restoration of roads and verges' (paragraph 2.10.143); and

'Further it may be appropriate for any non-permanent highway improvements carried out for the development (such as temporary road widening) to be made available for use by other subsequent solar farm developments'. (paragraph 2.10.144)

3.10 With regards to operational impacts from solar PV developments, the NPS EN-3 states that:

'Once solar farms are in operation, traffic movements to and from the site are generally very light, in some instances as little as a few visits each month by a light commercial vehicle or car. Should there be a need to replace machine components, this may generate heavier commercial vehicle movements, but these are likely to be infrequent'; (paragraph 2.10.161)

'The Secretary of State is unlikely to give any more than limited weight to traffic and transport noise and vibration impacts from the operational phase of a project'. (paragraph 2.10.162)

3.11 In line with NPS-EN-3, this Transport Assessment sets out the routes for construction vehicles, and how they will be managed through the oCTMP. A cumulative assessment has been provided.

National Planning Policy Framework (December 2023)

3.12 Paragraph 115 of the National Planning Policy Framework (NPPF) states that, 'Development should only be prevented or refused on highways grounds if there would be an unacceptable impact on highway safety, or the residual cumulative impacts on the road network would be severe'.

- 3.13 Paragraph 117 of the NPPF states, 'All developments that will generate significant amounts of movement should be required to provide a travel plan, and the application should be supported by a transport statement or transport assessment so that the likely impacts of the proposal can be assessed'.
- 3.14 This Transport Assessment demonstrates that the residual cumulative impacts on the road network are not severe, in line with Paragraph 115 of the NPPF. In line with Paragraph 117, a Transport Assessment and Travel Plan has been prepared.

Selby District Council Core Strategy (2013)

- 3.15 In April 2023, NYC became the administrative authority in which the Site is located, following its creation as a unitary authority by combining several district councils, including Selby District Council ('SDC'), the administrative area within which the Site had previously been located. However, the planning policy of SDC is still relevant to the Proposed Development.
- 3.16 One of the core objectives of the Selby District Council Core Strategy (2013) is to focus new development in the 'most sustainable locations, where reasonable public transport exists, and taking full account of local needs and environmental, social and economic constraints' (Objective 3 of paragraph 3.5).
- 3.17 Policy SP17 directly relates to low-carbon and renewable energy developments stating that the council will 'consider identifying 'suitable areas' for renewable and low carbon energy sources and supporting infrastructure'. Development proposals seeking to implement a new source of renewable energy are required to meet several criteria, including:
 - *i.* Are designed and located to protect the environment and local amenity or
 - *ii.* Can demonstrate that the wider environmental, economic and social benefits outweigh any harm caused to the environment or local amenity, and
 - iii. Impact on local communities are minimised.

Draft Selby District Council Local Plan (Consultation Version 2024)

3.18 Policy SG10 of the draft consultation version of the Selby Local Plan (2022) states, where certain criteria is met, proposals for low carbon and renewable energy storage and generation will be supported. The criteria are as follows:

- "Planning impacts of the development and associated infrastructure, both individually and cumulatively, are, or can be made, acceptable;
- Appropriate weight, consideration and mitigation has been given to the following where applicable:
 - Landscape character and sensitivity;
 - Designated nature conservation sites, features, functionally linked land, protected habitats and species;
 - Designated and non-designated heritage assets and their settings;
 - Hydrology and water quality;
 - Impact on Infrastructure and Transport Networks including highways, rail, aviation, operations, navigational systems, PROW, television, radio, telecommunications systems;
 - Living conditions and amenity including due to noise, odour, dust, vibration, visual intrusion, shadowing or flicker.
- Community engagement has been undertaken which demonstrates the delivery of environmental, social and economic benefits and how concerns will be addressed/mitigated for;
- The site will be recovered to a safe condition, with a suitable use, to minimum of its original value and condition, within a defined and agreed period should the infrastructure cease to be operational".
- 3.19 Policy IC6 of the Draft Local Plan relates to sustainable transport, highway safety and parking. The core of this policy centres around delivering a suitable transport network and associated infrastructure that supports sustainable travel and helps to deliver net-zero carbon emissions across the Plan Area. Achieving this will be done by:
 - Safeguarding the long-term opportunities for waterborne and rail-freight transhipment.
 - Supporting development which is located in areas:
 - Well-served by existing walking, cycling and public transport infrastructure;
 - Accessible to all sections of the community; and
 - Provides linkages to and between developments in order to promote active travel.
 - Supporting development which incorporates into its design and layout:
 - Safe pedestrian, cycling, vehicular, emergency and refuse vehicle access;
 - Appropriate measures to avoid, mitigate and manage any significant impacts on highway capacity, congestion or safety, including any contribution to cumulative impacts, measures for network and traffic management, suitable crossing points, footways and dedicated provision for cyclist, equestrian and disabled users where necessary;
 - High-quality walking and cycling networks and connections to support the objectives of the LCWIPs;
 - Improvements to the capacity and accessibility of public transport between settlements in the Plan Area and to the cities of York, Leeds and Hull;
 - A reduction in transport carbon emissions such as through the use or support of low and ultra-low emission vehicles, car clubs and rail or waterborne freight;
 - New and improved transport facilities associated with the Local and Strategic Road Networks and improvements to the accessibility of rural areas in line with identified and evidenced needs.
 - Supporting development which incorporates adequate provision for parking, including:
 - Car, cycle, disabled and operational parking, in line with the requirements of the Highways Authority Interim Guidance on Transport Issues (2015) and any subsequent updates;

- Parking with infrastructure provision for low-emission vehicles;
- Where development is in close proximity to existing town centres or transport hubs, lower parking requirements may be considered where:
 - It can be demonstrated that other active or sustainable travel uptake can be delivered; or
 - Enhancements to existing public car parking can be delivered to improve the vitality of local centres, public transport hubs or public use low carbon vehicle infrastructure.
- Supporting development which would not result in the loss of off-street or on-street car parking spaces unless:
 - Alternative provision, for at least the same number of spaces, can be made at an appropriate location; or
 - It can be demonstrated that there is no longer a requirement for the existing level of car parking.
- 3.20 Contributions may be sought from all development to on-site and off-site mitigation and where necessary Transport Statements, Assessments, Travel Plans and post development monitoring may be required.
- 3.21 Policy IC7, relates to development that impact upon the Public Right of Way network, and development will only be supported where it can be demonstrated that:
 - Satisfactory and alternative routes are provided, with adequate signage and te new access is of the same or better standard; and
 - Where appropriate and viable, all reasonable opportunities for enhancement have been taken up. Enhancements can include:
 - New or improved links to the existing Public Rights of Way or sustainable travel network, including public transport, especially where routes can minimise conflict.
 - The provision of improved facilities to make routes more accessible or attractive to users.

Summary

3.22 This Transport Assessment demonstrates that the Site is situated in a suitable location for the Proposed Development. Through the documents submitted as part of the DCO application, in particular the **oCTMP [EN010140/APP/6.3.5.2]** and its proposed measures, the effects of the Proposed Development on the Local Transport Network and Strategic Road Network will be minimised during the construction phase. As set out in NPS EN-3 once solar farms are operational, they have very little effect on the local transport network. An outline Decommissioning Environmental Plan sets out how the decommissioning phase will be managed.

4 The Proposed Development

4.1 This Section summarises details of the Proposed Development including the Development proposals, Site access proposals, construction programme and construction compound facilities.

Overview of the Proposed Development

- 4.2 The Proposed Development will comprise the construction, operation, maintenance, and decommissioning of a solar photovoltaic (PV) array electricity generating station and Energy Storage System with a total capacity exceeding 50 megawatts (MW), and export connection to the National Grid.
- 4.3 The Order Limits and Parameter Plan is shown in **Appendix A.** The key elements are summarised below.

Solar Farm Zone

- 4.4 The main element of the Proposed Development, referred to as the 'Solar Farm Zone' on the Parameter Plans, will accommodate the solar arrays. The key equipment within the Solar Farm Zone are:
 - Solar PV Panels to convert sunlight into electrical current;
 - Mounting Structures Solar PV Panels will be mounted on a metal assembly of PV Mounting Structures. This includes metal rails to directly support the PV Panels, which themselves are supported by larger metal frames which are fixed on top of metal piles;
 - Inverter Stations The Inverter Stations incorporate inverters, transformers and switchgear and are required to manage the electricity generated by the PV Panels;
 - **Electric Cabling** Electrical cabling will be required as part of the Generating Stations to connect PV Panels to the Conversion Units.

BESS Compound

4.5 A BESS will be located within the Proposed Development. The BESS is designed to provide peak generation and grid balancing services to the electricity grid. This is achieved by allowing excess electricity generated either from the solar PV panels, or imported from the electricity grid, to be stored in batteries and dispatched when required.

4.6 A substation will be required and is included as part of the BESS compound. The substation will consist of electrical infrastructure such as the transformers, switchgear and metering equipment required to facilitate the export of electricity from the Site.

Grid Connection

- 4.7 The electricity generated by the Proposed Development will be exported to the National Grid substation at Drax Power Station via electrical cables. This connection will also facilitate the import of electricity to be stored within the BESS.
- 4.8 The cable/grid connection route will be approximately 2.1km in length. The final cable/grid connection route will be subject to an iterative design process and detailed design. However, it will include the following elements:
 - Construction of temporary haul road, and Laydown Areas;
 - Open Cut Excavation or trenchless methods;
 - Construction of Joint Bays; and
 - Cabling/Jointing.

Other Works

- 4.9 Other works include the following:
 - Erection of security fencing and lighting;
 - Installation of landscaping and habitat management;
 - Installation of site access points and internal access tracks;
 - Installation of surface water drainage features; and
 - Construction of construction/ decommissioning compounds.

Construction Programme

4.10 The construction programme is anticipated to last approximately 12 months.

Accesses

4.11 The access locations are shown in **Figure 4.1**.

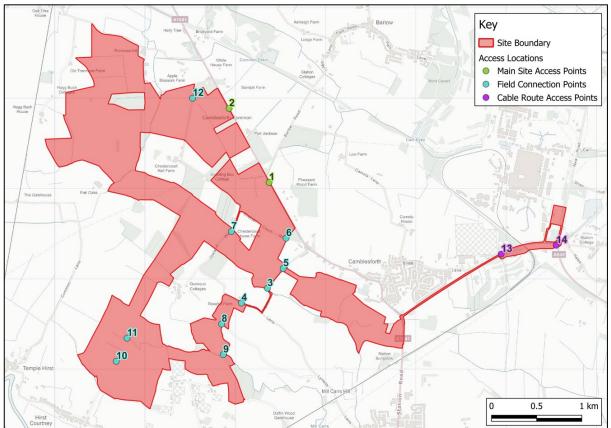


Figure 4.1 Access and Field Connection Locations

4.12 The accesses will be retained for the operational phase. During the Proposed Development's operational phase there are anticipated to be around five visits to the Site per month for maintenance purposes (less than one trip per day on average). These would typically be made by light van or 4x4 type vehicles.

Main Site Accesses

- 4.13 There will be main two access points for the solar farm, as follows:
 - Access 1: A1041 Bawtry Road (onto Jowland Winn Lane) shown in **Drawing SK01**; and
 - Access 2: A1041 Bawtry Road shown in **Drawing SK02**.
- 4.14 Both drawings are shown in **Appendix D**
- 4.15 Drawings SK01 and SK02 show the achievable visibility splays, and the swept path analysis of a 16.5m articulated vehicle, which will be the maximum sized vehicle that will be used to delivery equipment to the Site on a day-to-day basis. There will be a small number of abnormal load movements for the transportation of transformers to the Site, via Access 1. An over-runnable area will be provided to the

south of the junction to ensure this vehicle can access the Site. A specialist haulage company will be appointed to coordinate the movement of these loads in conjunction with the highway authority and police.

Field Connections

- 4.16 There will be a number of locations where the internal access track will cross over the public highway. Field connection drawings are shown in **Appendix E.**
- 4.17 Hardenshaw Lane will be used to connect the northern parcels of land to the southern parcels of land (Access 3 and Access 4 on Figure 3.1.). This is shown in **Drawing SK03**, which includes swept path analysis of a 16.5m articulated vehicle. Drawing SK03 also shows areas where widening of the public highway will be required.
- 4.18 In addition, **Drawings SK05 SK12** show the remaining field connections (Accesses 5-12 in Figure 3.1). These are all crossings of the public highway/unclassified roads that run through the Site. The locations shown for the field connections (access 5-12) are indicative at this stage, with the exact location to be fixed during the detailed design phase.
- 4.19 Banksmen will be deployed at field connections/crossings whenever they are being used by construction vehicles, to ensure the safety of all road users.

Grid Connection/Cable Route Accesses

- 4.20 Where the cable installation goes across the Drax Power Station railway line, works will be undertaken to the south of the A645. Therefore, there will be two cable route accesses (Access 13 and 14 in Figure 3.1).
- 4.21 Access 13 is shown in **Drawing SK13**, contained in **Appendix F.** This will utilise an existing access to the Drax Sports and Social Club from the A645.
- 4.22 Access 14 is shown in **Drawing SK14**, contained in **Appendix F.** This will utilise an existing access to the Drax Sports and Social Club from the A645/New Road Roundabout.

Road Safety Audit

4.23 A Stage 1 Road Safety Audit has been carried out for the main Site access point. The Road Safety Audit is shown in **Appendix G**. All recommendations can be implemented at the detailed design phase.

Construction Compound

- 4.24 A single primary compound will be located within the Site, adjacent to the Site access/egress points on the north eastern boundary.
- 4.25 Construction compounds will be set up throughout the Site and will include the following facilities:
 - Approximately 80 car parking spaces;
 - Welfare facilities, including toilets, a canteen, changing rooms and offices. These will be in the form of temporary mobile units;
 - A storage area for equipment, including storage crates;
 - A refuse and recycle store;
 - A turning area to ensure vehicles arrive and depart in a forward gear.
- 4.26 Up to five secondary compounds will be provided, each up to 1ha in area. These will provide up to 10 parking spaces and a full HGV turning circle. They will also include welfare facilities, including changing rooms and toilets, and a small storage area.

Internal Access Tracks

4.27 The Proposed Development will include internal access tracks throughout the Site allowing for the movement of construction and maintenance vehicles.

Public Rights of Way

- 4.28 PRoWs that cross the Site will generally remain open during the construction phase of the Proposed Development. There may be the requirement for some very temporary diversions of PRoWs where they cross the cable corridor. This will only be required when the cable is being installed and will not last more than a day. If temporary diversions of a PRoW are required for this short period, they will be appropriately managed in consultation with the local highway authority. Management measures for PRoWs are set out in the oCTMP and summarised in Section 8 of this TA.
- 4.29 All PRoWs will remain open throughout the Operational Phase of the Proposed Development.

Decommissioning

4.30 The Proposed Development will have a lifespan of 40 years, at which point it will be decommissioned. An **outline Decommissioning Environmental Plan (oDEMP) [EN010140/APP/5.3]** is submitted with the ES.

5 Trip Generation

5.1 The section sets out the trip generation associated with the construction, operational and decommissioning phase of the Proposed Development.

Construction Phase: HGVs

Non-Grid Connection Elements

- 5.2 The construction phase will include the use of HGVs to bring the equipment onto the Site and this will be strictly managed to ensure that vehicle movement is controlled and kept to a minimum. On a dayto-day basis, the largest vehicle that will be used to deliver equipment to the Site will be a 16.5m articulated vehicle, although a significant proportion of movements will be by smaller vehicles. A summary of the construction activity that requires HGV movements is as follows:
 - Delivery of solar modules and mounting structures;
 - Delivery of Inverters and Transformers;
 - Delivery of Substation equipment;
 - Delivery of material for the access track construction; and
 - Other deliveries for items such as waste, fencing, sand and gravel, and for non-grid connection elements such as landscaping.

Grid Connection / Cable Route Corridor

- 5.3 The grid connection route of the Proposed Development will be approximately 2.1km in length. The construction of the grid connection route includes the following elements:
 - Construction of temporary haul road, and laydown areas;
 - Excavation or trenchless methods;
 - Construction of joint bas; and
 - Cabling/jointing.

Total HGV Trips

- 5.4 **Table 5.1** sets out a summary of the HGV movements that will be associated with the construction phase of the Proposed Development. The vast majority of deliveries by HGV will be by 16.5m articulated vehicles or 8-10m rigid vehicles. However, there will be a small number of abnormal load deliveries associated with the Power Stations. Abnormal load movements are discussed separately in **Section 7**.
- 5.5 It is expected that there will be a relatively flat profile of deliveries throughout the construction period. Therefore, an average number of deliveries per day has been calculated based on the length of the construction period. Notwithstanding this, it is acknowledged that there will be small peaks throughout the construction period, especially during Site set up. To account for this, a 50% uplift has been applied for the purposes of assessment.
- 5.6 Construction vehicles will avoid travel during the network peak hours where possible; therefore, deliveries will be scheduled for between 09:30 and 16:30, where possible.

Table 5.1 Anticipated Construction Deliveries (HGV)

Construction Activity	Vehicle Size (Max)	Solar Farm	Grid Connection	Total
Construction Period (Working	j Days)	260	260	260
Modules and Mounting Structures	16.5m Articulated	1,350		1,350
Power Stations	16.5m Articulated	25		25
Access Track	10m Tipper	450		450
General (Fencing, Landscaping, etc.)	10m Rigid	1,100		1,100
Energy Storage System	16.5m Articulated	450		450
Substation	27.5m AIL Vehicle	3		3
Grid Connection	10m Tipper		1,200	1,200
Total		3,378	1,200	4,578
Average per Day	13	5	18	
Total Movements (Arrivals + De	6,756	2,400	9,156	
Average Movements per I	26	10	36	
Average Arrivals per Day (Peak Perio	19	7	26	
Average Movements per Day (Peak Pe	38	14	52	

- 5.7 Table 5.1 shows that there could be the following HGV movements:
 - Average Day: 18 HGV arrivals (36 total movements) including:
 - 13 HGVs for the solar array and BESS element (26 total movements)
 - 5 HGVs for the grid connection element (10 total movements)
 - Peak Day: 26 HGV arrivals (52 total movements) including:
 - 19 HGVs for the solar array and BESS element (38 total movements)
 - 7 HGVs for the grid connection element (14 total movements)

Construction Phase: Cars/LGVs Movements

- 5.8 Estimates of construction worker flows are informed by **Chapter 13: Socio-Economics** [EN010140/APP/6.1.13] of the Environmental Statement. This calculates that up to 200 direct full time equivalent ('FTE') jobs could be supported by the Proposed Development during the construction phase. For this assessment, construction workers have been spread across the Site on a proportional basis.
- 5.9 For the grid connection/cable element of the Proposed Development, there will be around 10 construction workers on that part of the Site on a typical day.
- 5.10 Construction worker shifts will be scheduled so that workers are not traveling during the network peak hours of 08:00-09:00 and 17:00-18:00.
- 5.11 As part of the **oCTMP [EN010140/APP/6.3.5.2]** an Outline Construction Worker Travel Plan has been prepared. This includes a measure for the provision of shuttle buses to transport construction workers to and from the Site. This is particularly important for non-local workers, who will stay in local accommodation and be transported to the Site. It can also be utilised by other workers as appropriate. It is expected that a mixture of coaches and minibuses will be used. On average, it is expected that a shuttle bus will be able to accommodate 20 workers. In addition, workers who drive will be encouraged to car share where possible.
- 5.12 With this in mind, it is assumed that 50% of workers will arrive by shuttle bus. This is a similar proportion to other DCO applications. For example, Longfield Solar Farm (PINS reference EN010118) assumed that 55% of the workforce would arrive by shuttle bus based on the proportion of the workforce that would be non-local to the Site and would stay in local accommodation.

- 5.13 The remainder will arrive by car with an assumed 1.5 construction workers per car based on the national car occupancy average.
- 5.14 Based on 210 construction workers (including 10 for the Grid Connection, who are all assumed to arrive by car), the forecast number of cars/LGVs are set out in **Table 5.2**.

Construction Activity	Non-Grid Connection Elements	Grid Connection Element	Total
Construction Workers (Busy Day)	200	10	210
Shuttle Bus	5	-	5
Car	67	7	74
Total (Arrivals)	72	7	79
Total Movements (Arrivals + Departures)	144	14	158

Table 5.2 Construction Worker Movements: Peak Day

5.15 Table 5.2 shows that there could be up to 79 cars/LGVs/shuttle buses associated with construction worker arrivals on a busy day. These are likely to arrive in the morning, with the same amount of the departures in the afternoon/evening. As mentioned, shift patterns will be coordinated to avoid construction work travel during the traditional network peak hours of 08:00-09:00 and 17:00-18:00.

Construction Phase: Typical Trip Profile

5.16 Based on the trips set out within this chapter, a typical trip profile is set out in **Table 5.3**.

	Ca	ars	Shutt	le Bus	HGV (Solar)	HGV (Cable)	То	tal
	Arr	Dep	Arr	Dep	Arr	Dep	Arr	Dep	Arr	Dep
06:00-07:00	37	0	3	0	0	0	0	0	40	0
07:00-08:00	37	0	2	0	0	0	0	0	39	0
08:00-09:00	0	0	0	0	0	0	0	0	0	0
09:00-10:00	0	0	0	0	2	2	1	1	5	5
10:00-11:00	0	0	0	0	2	2	1	1	5	5
11:00-12:00	0	0	0	0	3	3	1	1	5	5
12:00-13:00	0	0	0	0	3	3	1	1	6	6
13:00-14:00	0	0	0	0	3	3	1	1	5	5
14:00-15:00	0	0	0	0	2	2	1	1	5	5
15:00-16:00	0	0	0	0	2	2	1	1	5	5
16:00-17:00	0	37	0	3	2	2	0	0	0	40
17:00-18:00	0	0	0	0	0	0	0	0	0	0
18:00-19:00	0	37	0	2	0	0	0	0	0	39
Total	74	74	5	5	19	19	7	7	105	105

Table 5.3 Typical Construction Vehicle Trip Profile: Peak Day

Operational Phase

5.17 During the Proposed Development's operational phase, there is anticipated to be less than five visits per month to the Site for maintenance purposes. These would typically be made by light van or 4x4 type vehicles. This will not generate any material effect on the local highway network.

Decommissioning Phase

- 5.18 The Proposed Development has a modelled operational lifetime of approximately 40 years, after which it will be decommissioned. The number of vehicles associated with the decommissioning phase are not anticipated to exceed the number set out for the construction phase, as set out in Table 5.1. An **outline Decommissioning Environmental Plan (oDEMP) [EN010140/APP/6.3.5.3]** is submitted with the ES.
- 5.19 This will be secured by a requirement of the DCO.

Summary

- 5.20 This section has summarised the likely trip generation of the Proposed Development during the construction, operational and decommissioning phases.
- 5.21 On a peak day during the construction phase, the following movements could be generated:
 - HGV 26 (52 total movements);
 - Car/Shuttle associated with construction workers 79 (158 total movements)
- 5.22 The trips will be spread around the Site and will access the Proposed Development via the two identified access points from the local highway network. The distribution of construction trips is discussed further in **Section 6**.
- 5.23 Construction deliveries by HGV will arrive between 09:30-16:30. They will be coordinated to avoid construction vehicle movements during the traditional AM peak hour (08:00-09:00) and PM peak hour (17:00-18:00). In addition, construction worker shift patterns will be coordinated to avoid travel during the network peak hours of 08:00-09:00 and 17:00-18:00.
- 5.24 During the Proposed Development's operational phase, there is anticipated to be less than five visits per month to the Site for maintenance purposes.
- 5.25 The number of vehicles associated with the decommissioning phase are not anticipated to exceed the number set out for the construction phase.

6 Construction Vehicle Trip Distribution

- 6.1 This section sets out the trip distribution associated with construction vehicles.
- 6.2 The proposed construction vehicle route to the Site is shown in **Figure 6.1**.

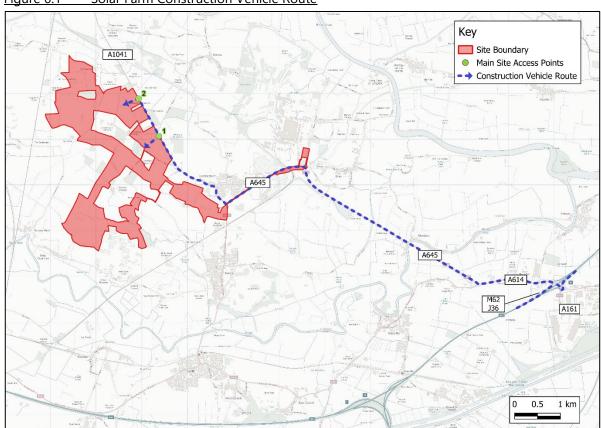


Figure 6.1 Solar Farm Construction Vehicle Route

- 6.3 The route will be as follows:
 - Access 1: M62 Junction $36 \rightarrow A614 \rightarrow A645 \rightarrow A1041$ Bawtry Road \rightarrow Access 1 and 2
- 6.4 The route provides the most direct route to the Site from the Strategic Road Network (M62). The route to the Site access points follows A-Roads with well-established HGV use. There are no weight, height, or width restrictions on the route. Alternative routes were reviewed, but these were less direct and travelled through a number of settlements, therefore were not chosen.
- 6.5 The following assumptions are made for the distribution of construction vehicles along the route.

- All vehicles will route to the Site from the M62 Junction 36 via the A614 and A645 (26 HGVs and 79 Cars/LGV/Shuttle during a peak day);
- Vehicles associated with the grid connection/cable route element will not continue onto the A1041 (seven HGVs and seven Cars/LGV/Shuttle);
- The remaining vehicles, all associated with the Solar Array and BESS elements of the Proposed Development will continue to the Site access points on the A1041 (19 HGVs and 72 Cars/LGV/Shuttle);
- 50% of these vehicles will access the Site via Access 1 and 50% will access the Site via Access 2; and
- 25% of these vehicles will use Hardenshaw Lane to connect to the southern area of the Site.
- 6.6 Based on the peak vehicle movements set out in Section 5, and the assumptions set out above, the number of vehicles using the local highway network surrounding the Site, on a peak day, is summarised in **Table 6.1**.

Link	Direction	HGV	Car/LGV/Shuttle	Total
A614	EB	26	79	105
A014	WB	26	79	105
A645	EB	26	79	105
A045	WB	26	79	105
A1041	EB	19	72	91
A1041	WB	19	72	91
Jowland Winn Lane	NB	10	36	45
	SB	10	36	45
Hardenshaw Lane	NB	5	18	23
Hardenshaw Lane	SB	5	18	23
M62	NB	26	79	105
10102	SB	26	79	105

Table 6.1 Proposed Development Trip Distribution – Daily Trips (Peak Construction)

6.7 HGV movements will be managed via a booking system, with the aim of managing arrivals and departures to ensure that they do not arrive and depart at the same time. This is set out in more detail in the oCTMP, which will be secured through a DCO requirement.

7 Abnormal Load Movements

- 7.1 There will be a number of abnormal load movements associated with the construction of the Proposed Development.
- 7.2 The Department for Transport (DfT) define a movement to be abnormal if the load and vehicle meets any of the following criteria:
 - a weight of more than 44,000kg;
 - an axle load of more than 10,000kg for a single non-driving axle and 11,500kg for a single driving axle;
 - a width of more than 2.9 metres; and/ or
 - a rigid length of more than 18.65 metres.
- 7.3 Abnormal Loads will be required for the delivery of transformers. They will all access the Site via Access
 1. An over-runnable area will be provided to the south of the junction to ensure this vehicle can access the Site, as shown in **Drawing SK01**, in **Appendix D**.
- 7.4 It is anticipated there will be approximately three abnormal load trips associated with the Proposed Development. Equipment will be most likely delivered on a 5-axle bed with a 5-axle draw bar trailer (approximately 36m in length). However, a 16-axle girder frame (approximately 70m in length) may be required if the transformer height is greater than 4.86m.
- 7.5 The abnormal loads will follow the same routes to the Site as other HGVs and as described in Section6. The M62 and A645 are identified as 'heavy loads routes' by National Highways.

Management Measures

7.6 Traffic management will be in place for all abnormal load movements destined for the Site. The exact nature of traffic management will be agreed with NYC and North Yorkshire Police prior to the movement taking place. Traffic management measures may include rolling road closures and vehicle escorts.

Summary

7.7 There will be three abnormal loads movements across the construction period, associated with the delivery of transformers and the cable route drum.

- 7.8 The abnormal load route will follow the route specified for construction vehicles.
- 7.9 Traffic management will be agreed with the local highway authority and police prior to the abnormal load movements taking place.

8 **Construction Period Management and Mitigation**

8.1 The section sets out the management and mitigation measures that will be put in place during the construction phase to reduce the effect of the Proposed Development on the local highway network. The mitigation measures are set out in the outline Construction Traffic Management Plan (oCTMP). A Final CTMP will be a secured through a DCO requirement.

Specific Highway Measures

8.2 The following highway measures will be implemented for the duration of the construction period:

Banksmen

8.3 Throughout the construction period, banksmen will be positioned at the two construction access points and the access road along Hardenshaw Lane, to assist vehicle movement in and out of the Site. Banksmen will also ensure the safe movement of all other users of the local highway network within the vicinity of the access, including any non-motorised users.

Pass-by Bays

8.4 On narrower sections on the highway, such as Hardenshaw Lane, temporary pass-by bays will be created. As HGV arrivals and departures will be managed through a booking system, it is unlikely that they will cross each other on this section of the local highway network. In addition, baseline traffic flows are very low here; therefore, this is a precautionary measure to assist in the movement of construction vehicles.

Traffic Management

8.5 As set out in Section 8, traffic management will be a requirement for Abnormal Load movements. Traffic management will be agreed with the local highway authority and police prior to the abnormal load movements taking place.

Construction Traffic Management Plan

8.6 A detailed CTMP will be implemented during the construction phase of the Proposed Development, secured through DCO requirement; the **oCTMP [EN010140/APP/6.3.5.2]** will inform the detailed CTMP.

- 8.7 The detailed CTMP will provide a framework for the management of construction vehicle movements to and from the Site, to ensure that the effect of the construction phase on the local highway network is minimised. It is an evolving document that will be updated prior to construction to reflect any considerations made during the DCO process, and to add detail that arises from the procurement of the Engineering Principal Contractor (EPC). The detailed CTMP will be agreed with NYC prior to construction commencing.
- 8.8 The **oCTMP [EN010140/APP/6.3.5.2]** contains further information on construction vehicle access, routing, and trip generation. Most importantly, it sets out a package of mitigation measures aimed at minimising the effect of construction traffic on the surrounding transport network.
- 8.9 The measures set out in the **oCTMP [EN010140/APP/6.3.5.2]** are summarised below:
 - Signage installed along the construction vehicle route to direct traffic to the Site;
 - The avoidance of travel during the network peak hours;
 - The provision of a booking system with the aim of managing arrivals and departure times;
 - The provision of parking on-site, to ensure that vehicles are not parked on the local highway network;
 - The provision of a wheel wash facility and access points, to ensure that vehicles do not distribute mud and debris on the local highway network;
 - Noise reduction and air quality measures;
 - A commitment to engage with the local community and set up a Community Liaison Group; and
 - A commitment to undertake a pre and post construction road condition survey. This will
 identify defects that can reasonably be attributable to construction activities at the Site. Any
 identified highways defects resulting from construction activities associated with the Site will
 be corrected to the satisfaction of the local highway authority.
- 8.10 Through the detailed CTMP, a construction worker travel plan will also be implemented. This will include the following measures aimed at reducing private vehicle use:
 - Shuttle Bus The location where staff will travel from is unknown at this stage as it will depend on the appointed contractor. However, it is envisaged that the workforce will be nonlocal and stay at local accommodation and be transported to the Site by shuttle bus to minimise the impact on the strategic and local highway network;
 - **Car sharing** A car sharing Proposed Development will be set up. This will match construction workers who live in a similar area, or who follow a similar route to the Site and encourage them to car share to save costs and reduce their impact on the environment.

Public Rights of Way

- 8.11 PRoWs that cross the Site will generally remain open during the construction phase of the Proposed Development. There may be the requirement for some very temporary diversions of PRoWs where the cable is laid. This will only be required when the cable is being installed, will not likely last more than a day and alternate routes will be provided. If a temporary diversion of a PRoW is required for this short period, it will be appropriately managed in consultation with the local highway authority.
- 8.12 During the construction phase, there could be instances whereby a small number of construction vehicles have to cross the PRoWs on-site. Where this occurs, the **oCTMP [EN010140/APP/6.3.5.2]** includes measures that will be enforced to ensure the safety of all PRoW users. This will include the following measures:
 - Speeds will be limited to 10mph;
 - Drivers will stop and give-way to any pedestrian that they encounter;
 - Appropriate signage will be installed along the footpath to make users aware of the construction activity. This will include information on construction times;
 - Banksmen will be present to ensure the safe movement of all users;
 - The PROWs will be kept clear outside of construction hours; and
 - Any damage to the surface of the footpath will be repaired immediately. The surface will be returned to its original condition following construction.

Summary

8.13 A number of management and mitigation measures will be implemented throughout the construction period through the implementation of a detailed CTMP, to be secured through DCO requirement.

9 Effect of the Development on the Local Highway Network

9.1 This section summarises the effect of the development on the local highway network.

Construction Phase

- 9.2 The construction phase is expected to last approximately 12 months. The assessment of the effects of the construction phase is based on peak construction vehicle movements and distribution, as set out in Section 5 and Section 6 respectively.
- 9.3 Baseline traffic flows for the local highway network are shown in Table 2.1.
- 9.4 At this stage, construction is anticipated to start in 2027. TEMPro growth factors, which have been adjusted in line with the National Traffic Model (NTM), have been applied to the observed traffic flows to generate baseline traffic flows for 2026. The TEMPro growth factor for the Selby District is shown in **Table 9.1**.

Table 9.1 TEMPro Growth Factors (2022-2027)

Year	Growth Factor
2022-2027	1.0351

9.5 The 2022 observed and 2027 future baseline traffic flows are shown in **Table 9.2**.

Table 9.2 Baseline 2022 and 2027 Traffic Flows – Average Day (24 hr), Two-Way

	202	22	2027		
Link	Total Vehicles	HGV	Total Vehicles	HGV	
A614	12,171	8%	12,598	8%	
A645	7,382	8%	7,641	8%	
A1041 (Bawtry Road)	12,207	6%	12,635	6%	
Jowland Winn Lane	50	6%	51	6%	
Hardenshaw Lane	104	2%	108	2%	
M62 near Junction 36	52,000	24%	53,825	24%	

*HGV is classified as a vehicle over 3.5 tonnes

9.6 Daily construction traffic flows have been added onto 2027 base to show the change in vehicles. This is summarised in **Table 9.3**.

	Development		2027 plus Development		Percentage Change	
Link	Total Vehicles	HGV	Total Vehicles	HGV	Total Vehicles	HGV
A614	210	52	12,808	1,106	2%	5%
A645	210	52	7,851	659	3%	9%
A1041 (Bawtry Road)	182	40	12,817	735	1%	6%
Jowland Winn Lane	90	20	141	23	175%	644%
Hardenshaw Lane	46	10	154	12	43%	576%
M62 near Junction 36	210	52	54,035	12,810	0.4%	0.4%

Table 9.3 Baseline 2027 Traffic Flows plus Construction Traffic – Average Day (24 hr), Two-Way

- 9.7 Table 9.3 indicates that there will not be a significant percentage change in the number of daily vehicle trips on A-roads within the local highway network, namely the A614, A645 and A1041 (less than 3% change in total vehicles) and the M62 near Junction 36 (less than 1% change in total vehicles) as a result of construction traffic.
- 9.8 However, the smaller, more rural roads of Jowland Winn Lane and Hardenshaw Lane, will see a higher percentage increase in daily traffic flows because these roads typically have low baseline traffic flows. Jowland Winn Lane has just 51 daily vehicle movements in the 2027 base. The Proposed Development will only add an additional 90 movements over the daily period.
- 9.9 The effect of these changes in traffic flows, which are spread out across local highway network surrounding the Proposed Development, is not forecast to have any significant effect over the course of the working day. As discussed, the construction period is 12 months so effects will be temporary in nature.

Peak Hour Traffic Flows

9.10 Construction vehicles will avoid travel during the network peak hours where possible. Deliveries will be scheduled for between 09:30 and 16:30. Construction worker shifts will be scheduled so that workers are not traveling during the network peak hours of 08:00-09:00 and 17:00-18:00.

9.11 As a result, there are unlikely to be any significant peak hour movements associated with the construction phase of the Proposed Development. Therefore, the construction phase of the Proposed Development will not result in any highway network capacity constraints during the network peak hours.

Operational Phase

9.12 During the Proposed Development's operational phase, there is anticipated to be less than five visit per month to the Site for maintenance purposes. These would typically be made by light van or 4x4 type vehicles. This will not result any material effect on the local highway network.

Decommissioning Phase

- 9.13 It is assumed there will not be more vehicular movements associated with the decommissioning phase than there are with the construction phase. Therefore, the same assumptions can be made for both the construction and decommissioning phases. There are unlikely to be any significant peak hour movements associated with the decommissioning phase of the Proposed Development.
- 9.14 Therefore, the decommissioning phase of the Proposed Development will not result in any highway network capacity constraints during the network peak hours.

Summary

9.15 The effect of the temporary changes in traffic flows on the local highway network associated with the construction phase of the Proposed Development are not anticipated to be significant in nature. Trips are well spread out around the network, and will be spread across the working day, avoiding the network peak hours.

10 Cumulative Effects of the Proposed Development

10.1 A number of cumulative Proposed Developments are proposed in the local area. The following developments are considered to potentially have a transport and access effect on the local area and have been reviewed as part of this cumulative assessment.

Construction Phase

- 10.2 Having reviewed information within the public domain in relation to these Proposed Developments, it is considered that the following Proposed Developments will have an effect on the local highway network surrounding the Proposed Development:
 - Drax Power Station Bioenergy with Carbon Capture and Storage Project NSIP (PINS Ref: EN010120): A carbon capture infrastructure installation at Drax Power Station for the compression and treatment of carbon dioxide to allow connection to a National Grid carbon dioxide transport system;
 - Land off New Road, Drax (Ref: 2020/1357/FULM): An energy storage facility with associated infrastructure, access and grid connection;
 - Land off Hales Road, Drax (Ref: 2021/1089/FULM): An energy storage facility with associated infrastructure, access and grid connection;
 - Land North and South of Camela Lane, Camblesforth (Ref 2021/0788/EIA): Development of a ground mounted solar farm including associated infrastructure;
 - Drax Power Station, Drax (Ref: 2022/0107/NYSCO): The additional recovery of ash resource on land at Barlow Ash Mound;
 - Rusholme Grange, Rusholme Lane, Newland, Selby (Ref: 2021/0601/FUL): Construction of a battery energy storage system to provide energy balancing services to the National Grid; and
 - Land south of the A645, Drax (Ref: 2023/0128/EIA): Development of a ground-mounted solar farm including associated infrastructure.
 - East Yorkshire Solar Farm NSIP (PINS Ref: EN010143): The installation of solar photovoltaic generating panels, associated electrical equipment, cabling and on-site energy storage facilities together with grid connection infrastructure. The point of connection will be at Drax Substation, situated approximately 6.2km to the south-west of the PV site. The generating capacity of the Proposed Development will exceed 50MW and its maximum capacity is anticipated to be 400MW.
- 10.3 These Proposed Developments have been selected for cumulative assessment due to their proximity to the Proposed Development or the routes used by construction or operational traffic share part of, or all, of the assigned construction vehicle route.

10.4 **Table 10.1** sets out the additional traffic flows associated with these Proposed Developments, based on information within the public domain.

Link	Drax Power Station Bioenergy	Land off New Road	Land off Hales Lane	Land North and South of Camela Lane	Drax Power Station	Rusholme Grange	Land south of A645	East Yorkshire Solar Farm	Total
A614	1,042	24	24	6	2	4	10	68	1,180
A645	1,042	32	24	6	2	4	10	68	1,188
A1041	398	8	0	6	0	0	0	0	412
Jowland Winn Lane	0	0	0	0	0	0	0	0	0
Hardensh aw Lane	0	0	0	0	0	0	0	0	0
M62	1,042	24	24	6	2	4	10	68	1,180

Table 10.1 Daily Traffic Flows Associated with Cumulative Schemes

10.5 **Table 10.2** sets out the development flows within the study including the cumulative Proposed Developments.

	Base 2027	Base plus Helios	Base plus Helios plus Cumulative Schemes	%Change*
A614	12,598	12,808	13,988	9%
A645	7,641	7,851	9,039	15%
A1041	12,635	12,817	13,229	3%
Jowland Winn Lane	51	141	141	0%
Hardenshaw Lane	108	154	154	0%
M62	53,825	54,035	55,215	2%

Table 10.2 Daily Traffic Flows: Cumulative Asses
--

*Compared to Base plus Development

- 10.6 Table 10.1 and Table 10.2 indicates that the cumulative Proposed Developments will have the largest effect on the A614 and A645. This is due to the majority of the Proposed Developments located near to these A-roads. As these are major A-roads, with traffic spread throughout the day, it is not expected to result in a significant effect on highway network capacity. Traffic movement associated with the Proposed Development will be secured through the detailed CTMP.
- 10.7 Table 10.2 shows that the A645 may experience a 15% change in traffic as a result of the cumulative schemes. As this is a worst-case scenario and all developments are assumed to build-out at the same time, the effect on the A645 is considered worse than in reality when it is unlikely all sites will build-out simultaneously.
- 10.8 However, the oCTMP includes a management measure that the Applicant will work with other developers in order to mitigate the effect of the cumulative schemes on the A645 in particular.

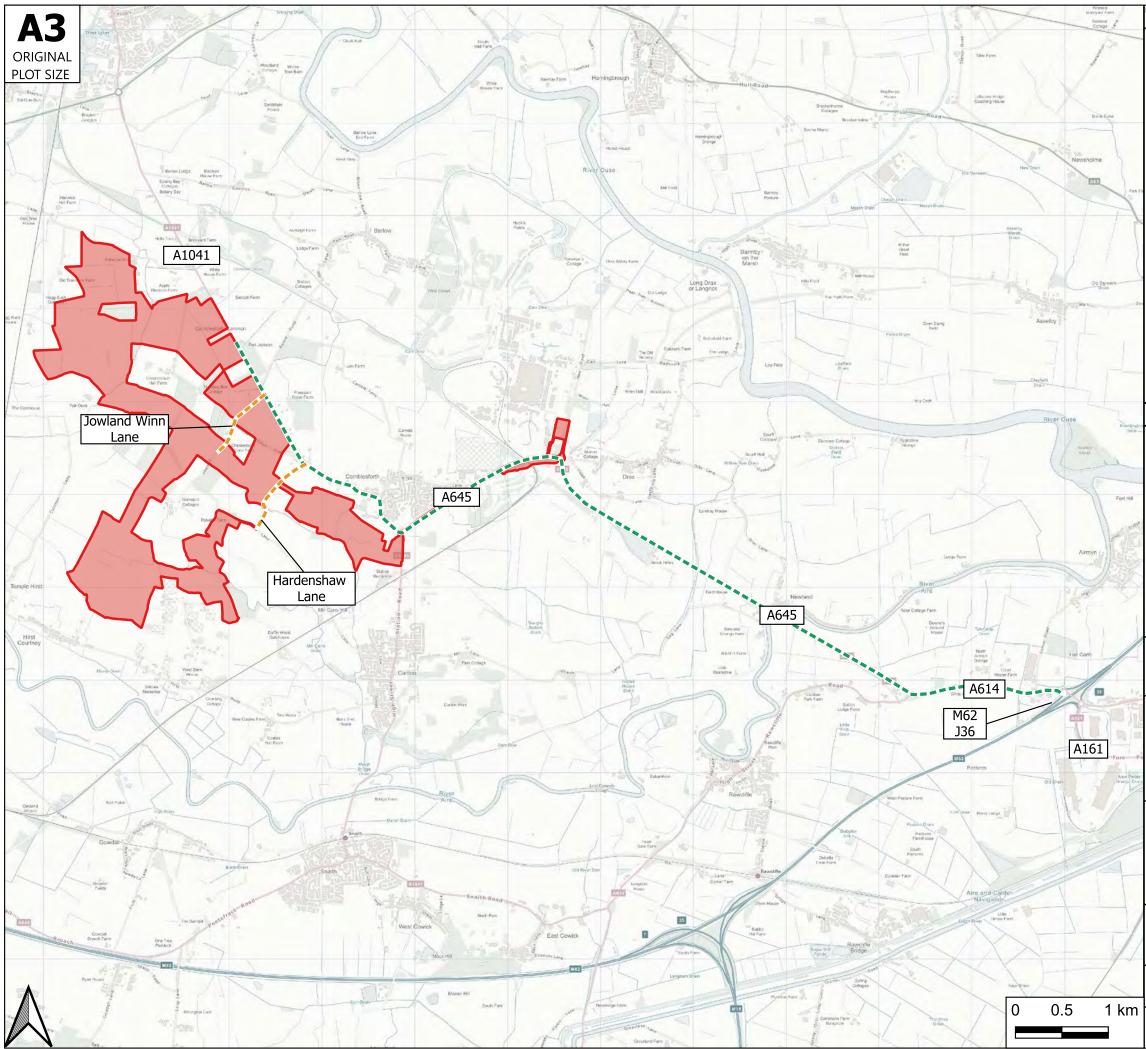
Operational Period

10.9 As stated, during the Proposed Development's operational phase, there is anticipated to be less than one visit per day to the Site for maintenance purposes. These would typically be made by light van or 4x4 type vehicles. This will not result any material effect on the local highway network. Therefore, there will be no material cumulative effect once the Proposed Development is operational.

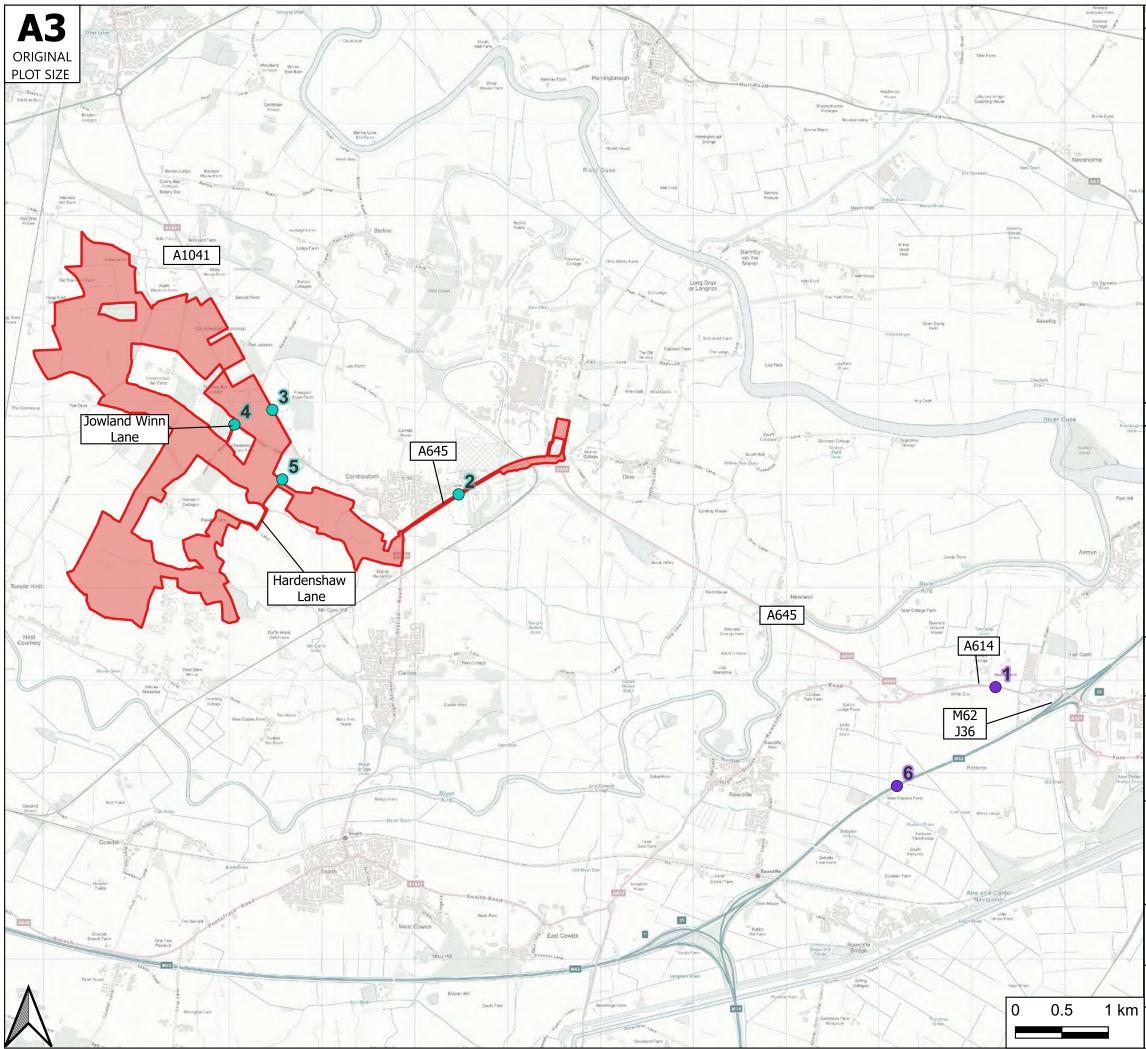
Decommissioning Phase

10.10 As set out in Section 5, the number of vehicles associated with the decommissioning phase are not anticipated to exceed the number set out for the construction phase. A Decommissioning Statement will be prepared for the Environmental Statement and a final Decommissioning Plan will be submitted

to the local planning authority for approval prior to decommissioning. This will be secured by a requirement of the DCO. Therefore, the cumulative effects of the Decommissioning Phase will be similar to those set out for the construction phase.

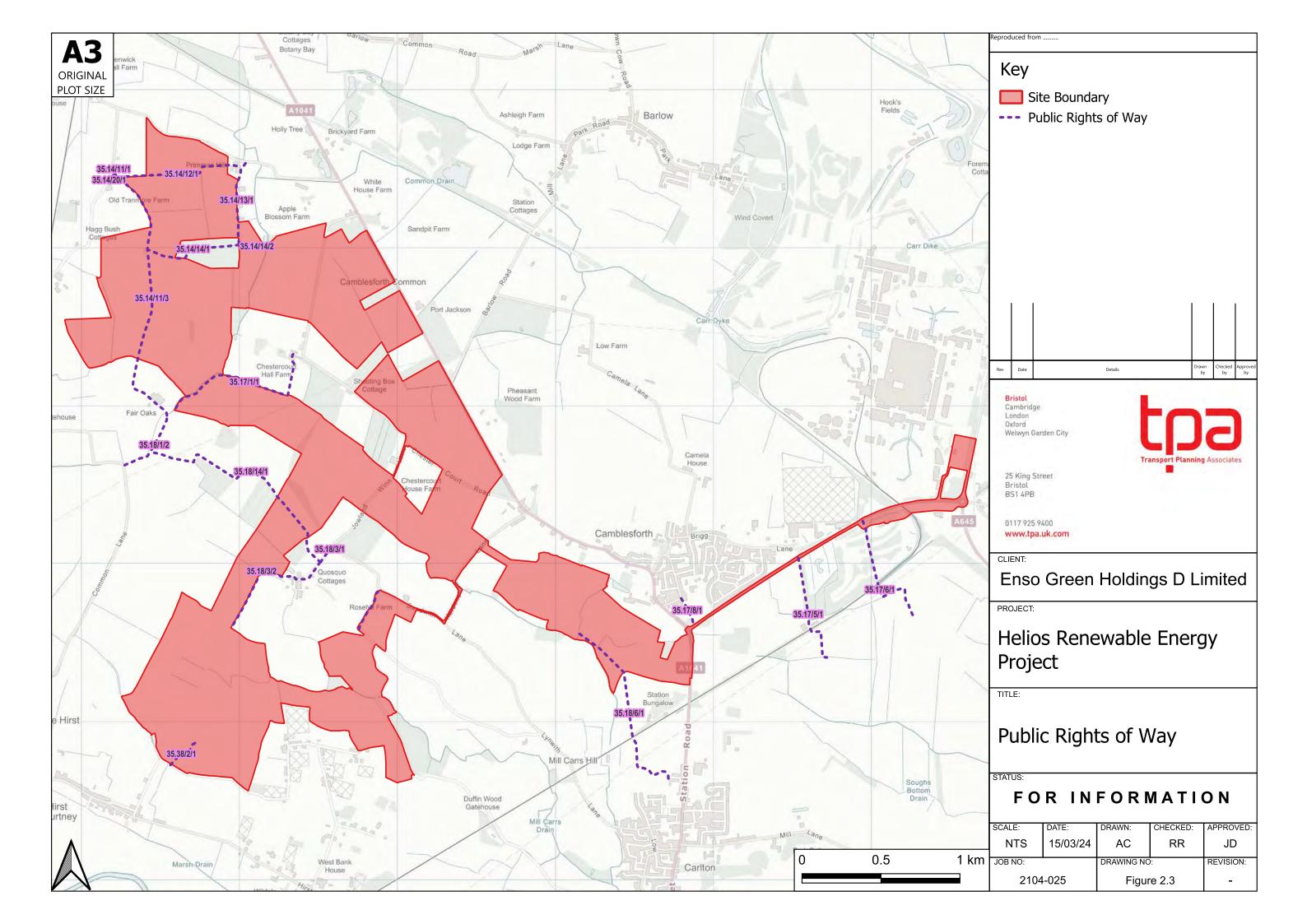

11 Summary and Conclusions

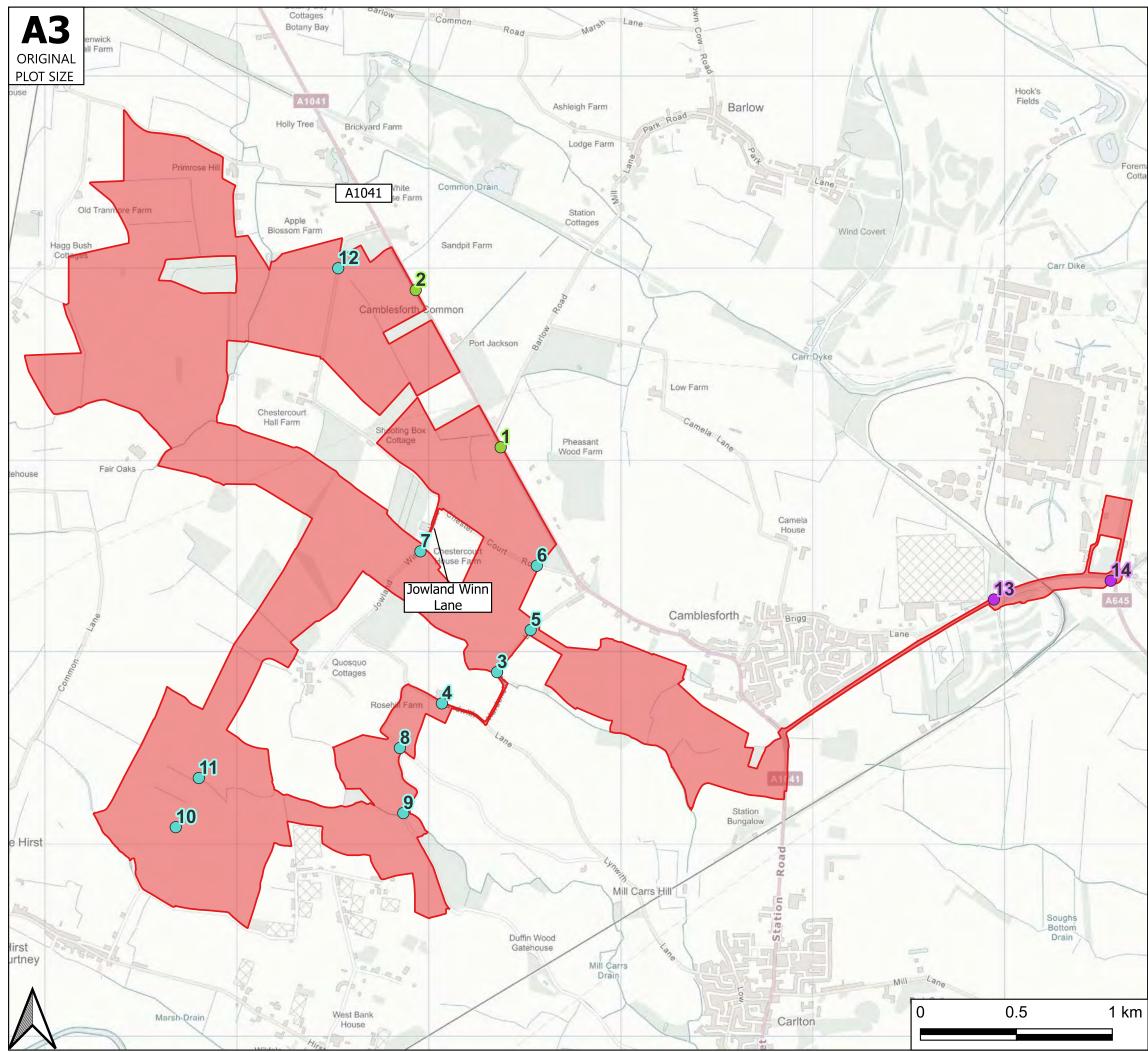
- 11.1 This TA has provided an overview of the potential effects of the Proposed Development in transport terms. It should be read in conjunction with **Chapter 10: Transport and Access** [EN010140/APP/6.1.10] of the ES.
- 11.2 The Proposed Development will comprise the construction, operation, maintenance, and decommissioning of a solar photovoltaic (PV) array electricity generating station and Energy Storage System with a total capacity exceeding 50 megawatts (MW), and export connection to the National Grid.
- 11.3 The Site is in a suitable location for the Proposed Development in terms of transport. Whilst there is not a significant level of walking, cycling or public transport accessibility in the area, the operation of the Site generates very few trips. The Site is located near to the Strategic Road Network, connected by a number of local roads. This will help facilitate the movement of construction vehicles to and from the Site.
- 11.4 There will be two main access points for the solar farm from the A1041. In addition, Hardenshaw Lane will be used to connect the northern parcels of land to the southern parcels of land. All accesses have been assessed and designed for their appropriateness for the relevant vehicles that will use them. During the construction phase, banksmen will be provided at the accesses to ensure the safe movement of construction vehicles when accessing and exiting the Site.
- 11.5 Once operational, very few vehicle trips will be associated with the development (less than one per day for general maintenance).
- 11.6 On a peak day during the construction phase, the following movements could be generated:
 - HGV 26 (52 total movements)
 - Car/Shuttle associated with construction workers 79 (158 total movements)
- 11.7 Chapter 6 of this Transport Assessment sets out how these trips will change traffic volumes on the local highway network. The effect of the temporary changes in traffic flows on the local highway network associated with the construction phase of the Proposed Development are not anticipated to be significant in nature. Trips are spread around the network, and will be spread across the working day, avoiding the network peak hours.
- 11.8 A number of management and mitigation measures will be implemented throughout the construction period. This includes:

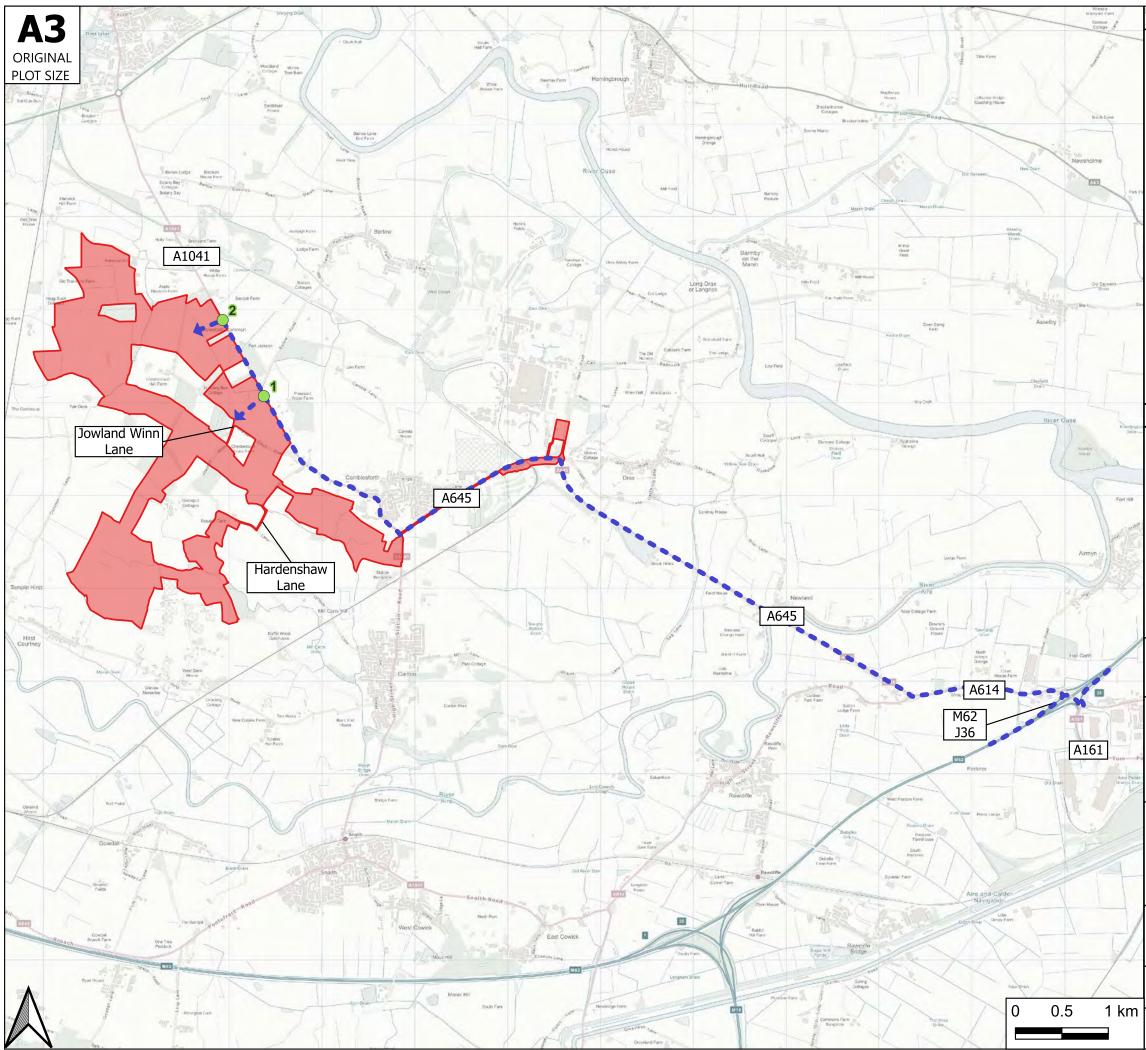

- The use of banksmen and localised traffic management to ensure highway safety;
- The implementation of a Construction Traffic Management Plan (CTMP) with the aim of minimising the effect of construction vehicles on the local highway network; and
- The implementation of a Public Right of Way Management Plan.
- 11.9 A Decommissioning Statement will be submitted to the local planning authority for approval prior to decommissioning. This will be secured by a requirement of the DCO.
- 11.10 In light of the information contained within this report, it is concluded that the Proposed Development is acceptable from a transport perspective and in line with policies set out in the National Policy Statements and NPPF

FIGURES

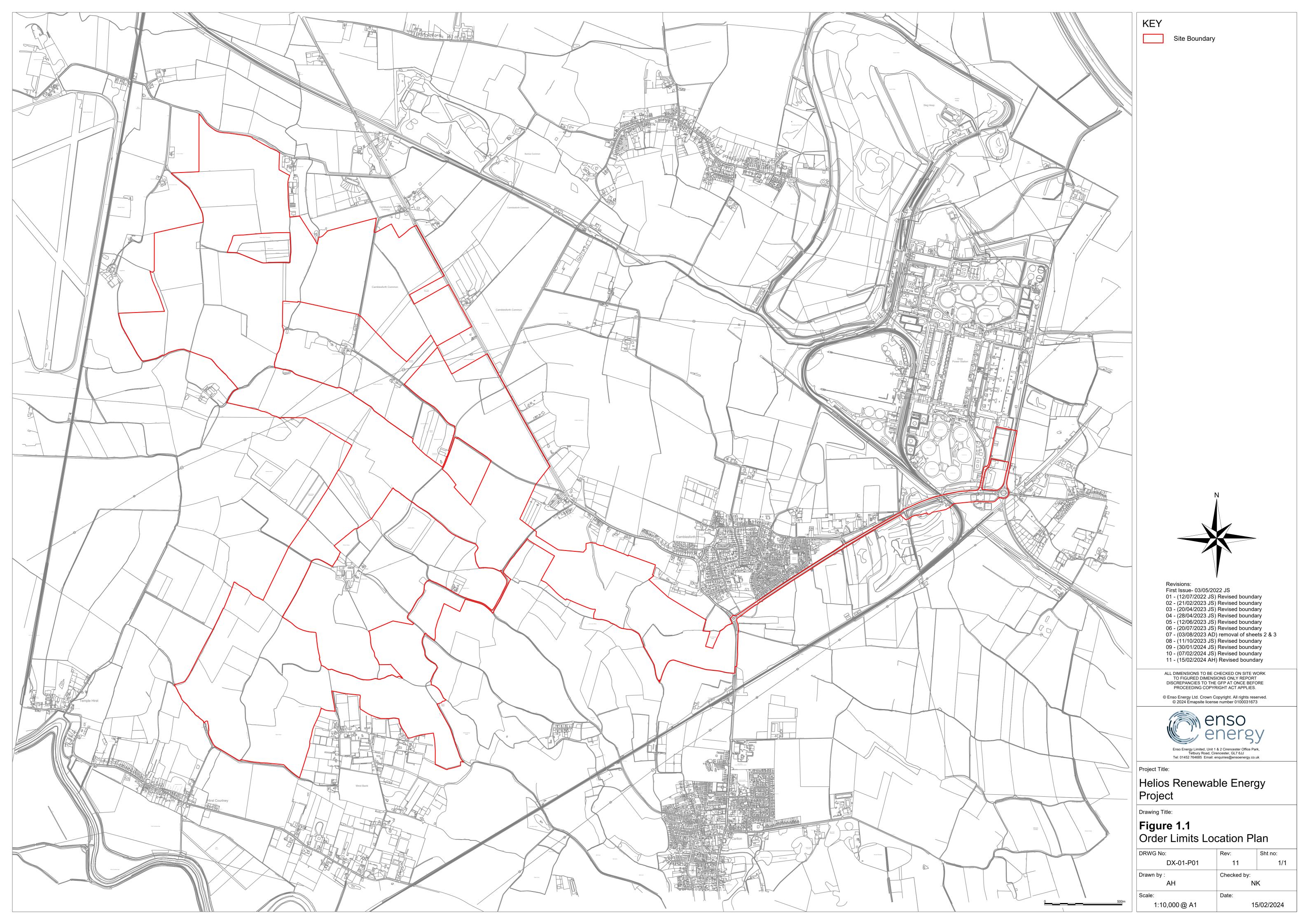
Transport Planning Associates 2104-025/TA/01 | June 2024




Reproduced from					
Key Site Boundary Sensitivity Strategic Road Network and A-Roads Local Highway Network					
Rev Date Details Drawn by Checked by Approved by					
Bristol Cambridge London Oxford Welwyn Garden City					
25 King Street Bristol BS1 4PB 0117 925 9400 www.tpa.uk.com					
Enso Green Holdings D Limited					
PROJECT: Helios Renewable Energy Project					
TITLE: Sensitivity					
SCALE: DATE: DRAWN: CHECKED: APPROVED: NTS 19/02/24 AC RR JD JOB NO: DRAWING NO: REVISION: REVISION: 2104-025 Figure 2.1 -					


Reprod	luced fron	n					
	D [.]	te Bounda fT Counter TC Locatio	-				
Rev	Date		Details		Drawn by	Checked by	Approved by
2: B B B	5 King SI ristol S1 4PB 117 925 9	urden City treet	Tra	ansport Plann	aing As	associate	25
		Green	Holdin	gs D I	_in	nite	d
PROJECT: Helios Renewable Energy Project							
TITLE: ATC Locations							
FOR INFORMATION							
	ITS	DATE: 19/02/24	DRAWN: AC	CHECKED: RR	A	PPRO JD	
JOB		4-025	DRAWING NC Figur		R	EVISIO	DN:

Figur



Reproduced from				
Key Site Boundary Access Locations Cable Route Access Points Field Connection Points Main Site Access Points				
Rev Date Details Drawn by Checked by Approved by				
Bristol Cambridge London Welwyn Garden City 40 Berkeley Square Clifton Bristol BS8 1HP 0117 925 9400 www.tpa.uk.com				
CLIENT: Enso Green Holdings D Limited PROJECT: Helios Renewable Energy Project				
TITLE: Access Locations STATUS: FOR INFORMATION				
SCALE: DATE: DRAWN: CHECKED: APPROVED: NTS 15/03/24 AC RR JD JOB NO: DRAWING NO: REVISION: 2104-025 Figure 4.1 -				

Reproduced from				
 Key Site Boundary → Study Area Main Site Access Points 				
Rev Date Details Drawn by Checked by Approved by				
Bristol Cambridge London Wetwyn Garden City 40 Berkeley Square Clifton Bristol BS8 1HP 0117 925 9400 www.tpa.uk.com				
CLIENT: Enso Green Holdings D Limited PROJECT: Helios Renewable Energy Project				
TITLE: Construction Vehicle Route STATUS: FOR INFORMATION				
SCALE: DATE: DRAWN: CHECKED: APPROVED: NTS 15/03/24 AC RR JD JOB NO: DRAWING NO: REVISION: 2104-025 Figure 6.1 -				

APPENDIX A

APPENDIX B

PROJECT	30462 Camblesforth, Selby
LOCATION	30462-008 - A645 Main Road
LOC. DESC.	A645 Main Road
START DATE	Wed 09 Mar, 2022
END DATE	Tue 15 Mar, 2022
SPEED LIMIT	60mph
SURVEY TYPE	7-day ATC, 15min periods, 6 veh. classes

OVERVIEW

A 7-day automatic traffic count on A645 Main Road, commencing Wed 09 Mar 2022, recorded a total of 51,671 vehicles. The posted speed limit of 60mph was exceeded by 8.7% of vehicles, and the seasonally adjusted, combined AADT value is 8,425 (see Equipment & Methodology below).

COMBINED

Total recorded volume	51,671
Avg daily volume (based on 7 days)	7,381.6
Average daily speed (7 days)	50.6mph
Average daily 85%ile (7 days)	57.3mph
AADT (annual average daily traffic)	8,425
Avg weekday volume (Mon-Fri, 24hrs)	8,199.2

Avg weekday speed (Mon-Fri, 24hrs)	50.0mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	6,843.0
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	49.4mph

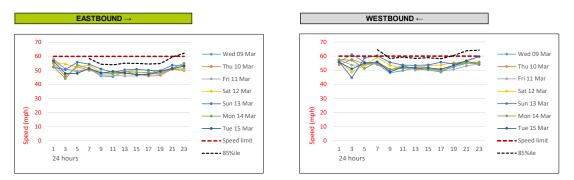
$\textbf{EASTBOUND} \rightarrow$

Total recorded volume	25,531
Avg daily volume (based on 7 days)	3,647.3
Average daily speed (7 days)	48.9mph
Average daily 85%ile (7 days)	55.3mph
% of vehicles exceeding 60mph	4.9%
Avg weekday volume (Mon-Fri, 24hrs)	4,050.2
Avg weekday speed (Mon-Fri, 24hrs)	48.3mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	3,345.8
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	47.8mph
Avg 12hr weekday 85%ile (Mon-Fri, 0700-1900)	54.2mph

The combined summary on the left shows the total volumes, average speeds, AADT and 85% les recorded in both directions from all the recorded data. Speeding vehicles are defined as those travelling 61mph and above.

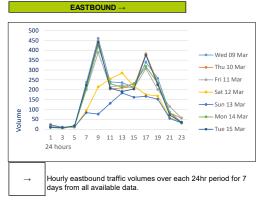
The summaries below provide directionalised details including speeding percentages and weekday daytime details.

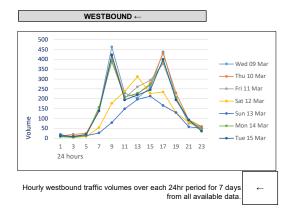
Total recorded volume	26,140
Avg daily volume (based on 7 days)	3,734.3
Average daily speed (7 days)	52.3mph
Average daily 85%ile (7 days)	59.3mph
% of vehicles exceeding 60mph	12.5%
Avg weekday volume (Mon-Fri, 24hrs)	4,149.0
	4,149.0 51.6mph
Avg weekday speed (Mon-Fri, 24hrs)	
Avg weekday volume (Mon-Fri, 24hrs) Avg weekday speed (Mon-Fri, 24hrs) Avg 12hr weekday volume (Mon-Fri, 0700-1900) Avg 12hr weekday speed (Mon-Fri, 0700-1900)	51.6mph


SITE LOCATION

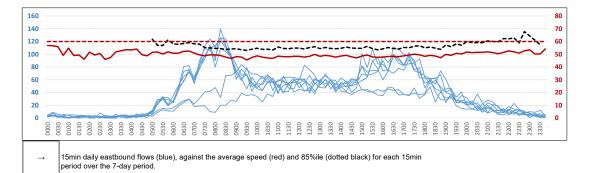
A645 Main Road
53°43'34.81"N, 1° 0'32.70"W

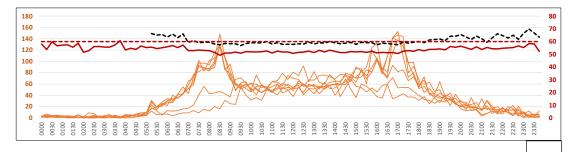
Lat, Ing.	
Project & site	30462-008
PSL	60mph
Bus route	No
Direction 1	Eastbound→
Direction 2	Westbound←

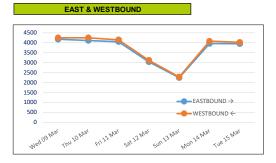

DAILY SPEEDS



Average daily speeds (solid thin colours) and 85% ile (dashed black) compared against 60mph posted speed limit (dashed red). The 85% iie is the speed at which 85% of all vehicles are observed to travel under free flowing conditions. A minimum of ten vehicles per speed bin is required for this calculation, hence the overnight low-volume 85% ile values may be zero.


The peak average eastbound daytime speed was 54.4mph at 07:15 on Sat 12 Mar, whilst the peak average westbound speed was 61.3mph at 07:30 on Sun 13 Mar (based on 15min averages between 0700 & 1900).


HOURLY VOLUMES


15min VOL & SPEED

15min daily westbound flows (orange), against the average weekly speed (red) and 85%ile (dotted black) for each 15min period over the 7-day period.

DAILY VOLUMES

Total 24hr eastbound (blue) and westbound (orange) traffic volumes over 7 consecutive days from all available data.

As can be expected, the lowest volumes were recorded on the Sunday, whilst the highest was on the Wednesday.

7-DAY AVERAGE CLASSES

	EASTBO	UND 7-DA	$Y AVG \rightarrow$			
	NOTOR	0450 /				
TIME	MOTOR CYCLES	CARS / LGV	OGV1	OGV2	PSV	TOTAL
0000	0.0	12.9	0.1	1.0	0.1	14.1
0100	0.1	7.1	0.1	1.0	0.0	8.4
0200	0.1	6.0	0.7	1.4	0.0	8.3
0300	0.0	6.6	0.0	2.3	0.1	9.0
0400	0.1	9.7	0.4	4.0	0.0	14.3
0500	0.3	62.7	1.0	11.9	0.6	76.4
0600	1.1	164.4	3.0	12.1	0.4	181.1
0700	1.1	262.6	6.6	12.1	1.4	283.9
0800	2.4	325.3	8.4	12.3	1.4	349.9
0900	1.3	221.9	8.4	12.7	1.9	246.1
1000	0.7	185.6	9.1	14.9	1.3	211.6
1100	1.7	187.0	8.0	14.0	0.9	211.6
1200	3.0	194.7	6.6	15.6	0.6	220.4
1300	2.9	198.3	5.9	11.1	0.3	218.4
1400	3.0	187.7	6.7	9.6	0.6	207.6
1500	2.0	253.4	6.9	10.1	0.9	273.3
1600	1.9	279.3	4.0	9.3	0.6	295.0
1700	1.3	272.6	2.9	6.3	0.6	283.6
1800	1.4	200.1	3.4	4.0	1.3	210.3
1900	0.7	127.0	0.9	2.4	0.6	131.6
2000	0.6	74.4	1.3	2.7	0.0	79.0
2100	0.0	54.1	0.3	1.1	0.0	55.6
2200	0.3	38.1	0.7	0.9	0.0	40.0
2300	0.3	16.9	0.0	0.7	0.0	17.9
12hr TTL	22.7	2768.4	76.9	132.0	11.6	3011.6
24hr TTL	26.4	3348.4	85.4	173.6	13.4	3647.3
	1%	92%	2%	5%	0%	

	WESTBU	UND 7-DAY	AVG ←		l	
TIME	MOTOR CYCLES	CARS / LGV	OGV1	OGV2	PSV	TOTAL
0000	0.0	9.7	0.3	1.4	0.1	11.6
0100	0.0	7.6	0.1	1.9	0.0	9.6
0200	0.0	4.3	0.4	3.4	0.4	8.6
0300	0.0	7.1	0.4	0.7	0.1	8.4
0400	0.1	12.0	0.9	3.4	0.7	17.1
0500	0.4	55.0	0.4	8.7	0.6	65.1
0600	1.7	101.7	4.1	6.1	1.0	114.7
0700	0.6	221.6	10.1	9.7	1.4	243.4
0800	1.1	308.9	9.0	13.6	2.6	335.1
0900	1.3	204.6	10.9	13.7	1.7	232.1
1000	1.4	178.4	10.3	13.4	1.3	204.9
1100	2.3	193.4	12.6	14.9	1.7	224.9
1200	1.7	205.9	10.9	16.1	0.7	235.3
1300	2.4	211.1	7.7	14.7	1.7	237.7
1400	2.6	231.4	8.7	11.0	0.9	254.6
1500	1.1	270.6	10.7	12.1	1.6	296.1
1600	3.9	324.1	7.4	12.0	0.6	348.0
1700	2.1	334.4	6.7	5.9	0.1	349.3
1800	0.7	178.0	3.7	2.9	0.7	186.0
1900	0.4	135.6	1.3	2.0	0.1	139.4
2000	0.4	77.4	1.3	3.3	0.0	82.4
2100	0.6	57.6	1.0	0.9	0.0	60.0
2200	0.0	47.3	0.6	1.7	0.0	49.6
2300	0.0	17.9	0.3	2.1	0.0	20.3
12hr TTL	21.3	2862.4	108.7	140.0	15.0	3147.4
24hr TTL	25.0	3395.6	119.9	175.7	18.1	3734.3
	1%	91%	3%	5%	0%	

Average daily eastbound and westbound volumes by class (condensed to the AQMA scheme), including 12hr totals for 0700-1900 and overall average percentages. Calculated from all available data over 7 days.

CYCLE PROVISION

The diagram compares total daily traffic flow (vertical axis) against the average daily 85% ile speed (horizontal axis) to demonstrate cyclist and vulnerable user considerations.

The guidelines are based on the Sustrans Design Manual (Apr 2014); Understanding User Needs, part 2.

Valid 85% iles are required to plot the graph.

METHODOLOGY

Equipment & methodology

Automatic traffic counts are undertaken using a pair of pneumatic tubes installed securely across the carriageway, one metre apart, recording air pulses to determine vehicle speed, class and volume. The ATC equipment generally remains in place for a consecutive seven day period, and the data analysed post-survey.

In queuing conditions, the accuracy of ATC recording equipment will reduce as follows;

- · 20 30mph: potential reduction of 9% accuracy in volume values
- 10 20mph: potential reduction of 26% accuracy in volume values
 00 10mph: potential reduction of 39% accuracy in volume values
- These figures are based on multiple ATC results compared against

accepted reference values from resilient manual counts.

AADTs are calculated using the seasonal COBA methodology; DMRB Vol. 13, Pt 4:

Weather & environmental

Inclement conditions during winter months or outbreaks of unseasonable weather may affect survey data collection. This can result in distorted traffic flows or unusable data and should be considered prior to survey approval. Although forecast checks are made prior to the survey commencing, A-T-R cannot be held responsible for the forecast accuracy.

CLASS	ABBREV.	DESCRIPTION	LENGTH	COBA
1	MC	Motorcycle	SHORT Up to	N/A
2	sv	Cars, taxis, 4WD, vans	5.5m	CAR &
3	SVT	Class 2 plus trailer		LGV
4	TB2	2 axle truck / bus	MEDIUM 5.5m to	OGV1 & PSV
5	TB3	3 axle truck / bus	14.5m	OGV1
6	T4	4 axle truck		
7	ART3	3 axle articulated		
8	ART4	4 axle articulated	LONG	OGV2
9	ART5	5 axle articulated	11.5m to 19.0m	
10	ART6	6+ axle articulated		

 Generated
 19 Feb 2024
 v6.0

 30462-008 Camblesforth, Selby. A645 Main Road. Summary.xls>

Equipment damage & failure

Although checked intermittently the equipment remains unmanned for much of the duration of the survey, and can potentially be interfered with, vandalised, damaged or stolen and A-T-R cannot be held responsible for any periods where data has not been captured.

The equipment is located in accordance with the details provided by the client and A-T-R cannot be held responsible for the accuracy of the data or loss of equipment due to theft and vandalism.

Roadworks & events

Where possible, roadworks checks are made 7 days before the survey commences. Additionally, influencing major local events are also monitored, covering the immediate vicinity of the surveys and any routes likely to affect the outcome of the survey.

Vehicle classifications

Vehicles recorded by the ATC are placed into one of ten classes based on axle spacing and pattern. This scheme is based on the AustRoad 94 algorithm and modified for UK traffic, referred to as ARX. The table on the left aligns the ARX classifications with the COBA Chapter 8 (Vol 13, Sec 1) classifications.

Under adverse conditions the accuracy of ATC classifications will deteriorate and an appropriate link count should be used for validation.

Disclaimer

Although every attempt is made to achieve accuracy, A-T-R may not be held liable for errors of fact or interpretation.

PROJECT	30462 Camblesforth, Selby
LOCATION	30462-004 - A1041 Bawtry Road
LOC. DESC.	A1041 Bawtry Road
START DATE	Fri 04 Mar, 2022
END DATE	Thu 10 Mar, 2022
SPEED LIMIT	60mph
SURVEY TYPE	7-day ATC, 15min periods, 6 veh. classes

OVERVIEW

A 7-day automatic traffic count on A1041 Bawtry Road, commencing Fri 04 Mar 2022, recorded a total of 85,447 vehicles. The posted speed limit of 60mph was exceeded by 9.2% of vehicles, and the seasonally adjusted, combined AADT value is 13,978 (see Equipment & Methodology below).

COMBINED

Total recorded volume	85,447
Avg daily volume (based on 7 days)	12,206.7
Average daily speed (7 days)	51.8mph
Average daily 85%ile (7 days)	57.9mph
AADT (annual average daily traffic)	13,978

Avg weekday volume (won-Fri, 24nrs)	13,108.2
Avg weekday speed (Mon-Fri, 24hrs)	51.0mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	11,075.8
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	50.2mph

NORTHBOUND ↑

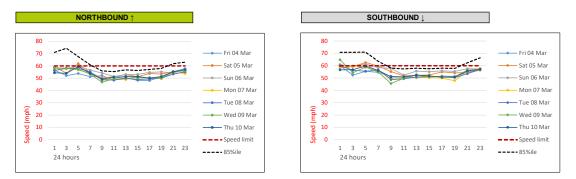
Total recorded volume	43,206
Avg daily volume (based on 7 days)	6,172.3
Average daily speed (7 days)	51.3mph
Average daily 85%ile (7 days)	57.2mph
% of vehicles exceeding 60mph	7.8%
Avg weekday volume (Mon-Fri, 24hrs)	6,659.0
Avg weekday speed (Mon-Fri, 24hrs)	50.5mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	5,635.2
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	49.8mph
Avg 12hr weekday 85%ile (Mon-Fri, 0700-1900)	55.6mph

Avg daily volume (based on 7 days)	6,034.4
Average daily speed (7 days)	52.3mph
Average daily 85%ile (7 days)	58.6mph
% of vehicles exceeding 60mph	10.6%
Avg weekday volume (Mon-Fri, 24hrs)	6,509.2
Avg weekday speed (Mon-Fri, 24hrs)	51.4mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	5,440.6
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	50.6mph
	50.0mpn
Avg 12hr weekday 85%ile (Mon-Fri, 0700-1900)	57.0mph

SITE LOCATION

Location	A1041 Bawtry Road
	53°44'33.54"N, 1°
Lat, Ing.	2'47.37"W
Project & site	30462-004
PSL	60mph
Bus route	No
Direction 1	Northbound↑
Direction 2	Southbound⊥

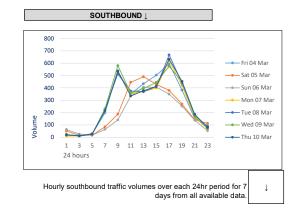
42,241 6,034.4


The combined summary on the left shows the total volumes, average speeds, AADT and 85% iles recorded in both directions from all the recorded data. Speeding vehicles are defined as those travelling 61mph and above.

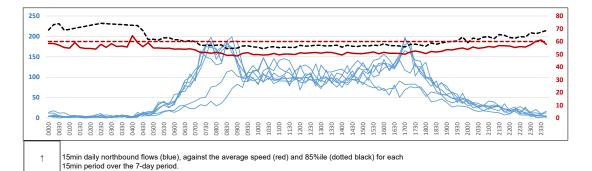
The summaries below provide directionalised details including speeding percentages and weekday daytime details.

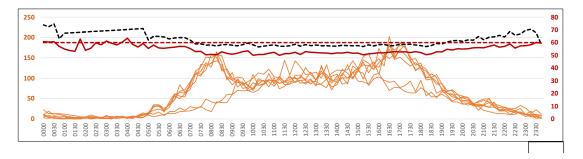
SOUTHBOUND \downarrow

Total recorded volume

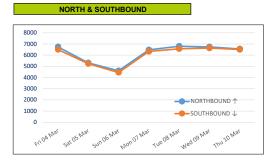

DAILY SPEEDS

Average daily speeds (solid thin colours) and 85% ile (dashed black) compared against 60mph posted speed limit (dashed red). The 85% ie is the speed at which 85% of all vehicles are observed to travel under free flowing conditions. A minimum of ten vehicles per speed bin is required for this calculation, hence the overnight low-volume 85% ile values may be zero.


The peak average northbound daytime speed was 59mph at 18:15 on Sun 06 Mar, whilst the peak average southbound speed was 61.1mph at 08:30 on Sun 06 Mar (based on 15min averages between 0700 & 1900).


NORTHBOUND 800 700 600 🗕 Fri 04 Mai 500 - Sat 05 Mar 400 — Sun 06 Mar 300 Mon 07 Mar 200 - Tue 08 Mar ne 100 - Wed 09 Mar Volt 0 - Thu 10 Mar 5 7 9 11 13 15 17 19 21 23 3 24 hours Hourly northbound traffic volumes over each 24hr period for 7 days from all available data. î

15min VOL & SPEED


HOURLY VOLUMES

15min daily southbound flows (orange), against the average weekly speed (red) and 85%ile (dotted black) for each 15min period over the 7-day period.

DAILY VOLUMES

Total 24hr northbound (blue) and southbound (orange) traffic volumes over 7 consecutive days from all available data.

As can be expected, the lowest volumes were recorded on the Sunday, whilst the highest was on the Wednesday.

7-DAY AVERAGE CLASSES

NORTHBOUND 7-DAY AVG ↑

CYCLES LGV C/CLES LGV 0000 0.0 21.3 0.4 2.0 0.1 23.9 0100 0.0 10.3 0.3 2.6 0.1 13.3 0200 0.1 9.4 0.4 3.9 0.3 14.1 0300 0.3 13.0 0.9 1.7 0.3 16.1 0400 0.1 24.1 1.0 3.1 0.6 29.0 0500 0.0 84.7 2.1 8.0 0.3 951. 0600 1.6 208.0 4.9 8.7 0.7 223.9 0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.1 432.0 1000 3.0 398.1 13.0 17.1 0.7 432.0 1000 3.0 388.1 13.3 18.0 1.3 419.7 1200 4.3		NUKIND					
0100 0.0 10.3 0.3 2.6 0.1 13.3 0200 0.1 9.4 0.4 3.9 0.3 14.1 0300 0.3 13.0 0.9 1.7 0.3 16.1 0400 0.1 24.1 1.0 3.1 0.6 29.0 0500 0.0 84.7 2.1 8.0 0.3 95.1 0600 1.6 208.0 4.9 8.7 0.7 223.9 0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.1 562.4 0900 1.4 420.3 10.3 15.0 1.4 448.4 1000 3.0 383.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7	TIME			OGV1	OGV2	PSV	TOTAL
0200 0.1 9.4 0.4 3.9 0.3 14.1 0300 0.3 13.0 0.9 1.7 0.3 16.1 0400 0.1 24.1 1.0 3.1 0.6 29.0 0500 0.0 84.7 2.1 8.0 0.3 95.1 0600 1.6 208.0 4.9 8.7 0.7 223.5 0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.1 562.4 0900 1.4 420.3 10.3 15.0 1.4 448.4 1000 3.0 388.1 13.0 1.7.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 <td>0000</td> <td>0.0</td> <td>21.3</td> <td>0.4</td> <td>2.0</td> <td>0.1</td> <td>23.9</td>	0000	0.0	21.3	0.4	2.0	0.1	23.9
0300 0.3 13.0 0.9 1.7 0.3 16.1 0400 0.1 24.1 1.0 3.1 0.6 29.0 0500 0.0 84.7 2.1 8.0 0.3 95.1 0600 1.6 208.0 4.9 8.7 0.7 223.8 0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.1 562.4 0900 1.4 420.3 10.3 15.0 1.4 448.4 1000 3.0 398.1 13.0 1.7 10.7 432.0 1100 4.3 371.6 11.7 13.0 1.1 401.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 366.4 1400 3.0 382.0 7.4 14.3 0.6 407.3	0100	0.0	10.3	0.3	2.6	0.1	13.3
0400 0.1 24.1 1.0 3.1 0.6 29.0 0500 0.0 84.7 2.1 8.0 0.3 95.1 0600 1.6 208.0 4.9 8.7 0.7 223.9 0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.11 562.4 0900 1.4 420.3 10.3 15.0 1.4 448.4 1000 3.0 398.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4	0200	0.1	9.4	0.4	3.9	0.3	14.1
0.00 0.0 84.7 2.1 8.0 0.3 95.1 0600 1.6 208.0 4.9 8.7 0.7 223.9 0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.1 562.4 0900 1.4 420.3 10.3 15.0 1.4 448.7 0900 1.4 420.3 10.3 15.0 1.4 449.3 1000 3.0 398.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 <	0300	0.3	13.0	0.9	1.7	0.3	16.1
0600 1.6 208.0 4.9 8.7 0.7 223.9 0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.1 562.4 0900 1.4 420.3 10.3 15.0 17.1 0.7 432.0 1000 3.0 398.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7	0400	0.1	24.1	1.0	3.1	0.6	29.0
0700 1.4 443.0 11.7 11.0 1.6 468.7 0800 1.0 534.6 10.4 15.3 1.1 562.4 0900 1.4 420.3 10.3 15.0 1.4 448.4 1000 3.0 398.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.3 118.0 1.0 4.3 0.1 <	0500	0.0	84.7	2.1	8.0	0.3	95.1
0800 1.0 534.6 10.4 15.3 1.1 562.4 0900 1.4 420.3 10.3 15.0 1.4 448.4 1000 3.0 398.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 308.1 1900 0.3 118.0 1.0 4.3 0.1 <td< td=""><td>0600</td><td>1.6</td><td>208.0</td><td>4.9</td><td>8.7</td><td>0.7</td><td>223.9</td></td<>	0600	1.6	208.0	4.9	8.7	0.7	223.9
0900 1.4 420.3 10.3 15.0 1.4 448.4 1000 3.0 398.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 308.1 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99	0700	1.4	443.0	11.7	11.0	1.6	468.7
1000 3.0 398.1 13.0 17.1 0.7 432.0 1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 308.1 1900 0.3 189.6 2.0 1.9 0.1 1932.2 2000 0.3 118.0 1.0 4.3 0.1	0800	1.0	534.6	10.4	15.3	1.1	562.4
1100 4.0 383.1 13.3 18.0 1.3 419.7 1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 308.1 1900 0.3 189.6 2.0 1.9 0.1 193.2 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 <td>0900</td> <td>1.4</td> <td>420.3</td> <td>10.3</td> <td>15.0</td> <td>1.4</td> <td>448.4</td>	0900	1.4	420.3	10.3	15.0	1.4	448.4
1200 4.3 371.6 11.7 13.0 1.1 401.7 1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 306.1 1900 0.3 189.6 2.0 1.9 0.1 193.9 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4	1000	3.0	398.1	13.0	17.1	0.7	432.0
1300 2.0 360.1 7.9 15.3 0.9 386.1 1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 306.1 1900 0.3 189.6 2.0 1.9 0.1 193.9 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 324.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 523	1100	4.0	383.1	13.3	18.0	1.3	419.7
1400 3.0 382.0 7.4 14.3 0.6 407.3 1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 28.0 5.0 4.0 0.7 308.1 1900 0.3 189.6 2.0 1.9 0.1 193.5 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238.2 24hr TTL 30.9 5806.9 129.6 191.6 13.4	1200	4.3	371.6	11.7	13.0	1.1	401.7
1500 3.1 407.7 11.3 12.0 0.4 434.6 1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 308.1 1900 0.3 189.6 2.0 1.9 0.1 1933.2 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238.2 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	1300	2.0	360.1	7.9	15.3	0.9	386.1
1600 2.6 446.9 7.6 9.3 0.3 466.6 1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 308.1 1900 0.3 189.6 2.0 1.9 0.1 193.9 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238.2 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	1400	3.0	382.0	7.4	14.3	0.6	407.3
1700 0.9 489.4 5.6 6.7 0.1 502.7 1800 0.4 298.0 5.0 4.0 0.7 308.1 1900 0.3 189.6 2.0 1.9 0.1 193.9 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 324.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238. 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	1500	3.1	407.7	11.3	12.0	0.4	434.6
1800 0.4 298.0 5.0 4.0 0.7 308.1 1900 0.3 189.6 2.0 1.9 0.1 193.9 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 324.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238. 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	1600	2.6	446.9	7.6	9.3	0.3	466.6
1900 0.3 189.6 2.0 1.9 0.1 193.9 2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238. 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	1700	0.9	489.4	5.6	6.7	0.1	502.7
2000 0.3 118.0 1.0 4.3 0.1 123.7 2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	1800	0.4	298.0	5.0	4.0	0.7	308.1
2100 1.0 95.9 0.7 1.3 0.3 99.1 2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238. 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	1900	0.3	189.6	2.0	1.9	0.1	193.9
2200 0.0 67.6 0.1 1.4 0.1 69.3 2300 0.0 30.1 0.6 1.7 0.0 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238. 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	2000	0.3	118.0	1.0	4.3	0.1	123.7
2300 0.0 30.1 0.6 1.7 0.0 I 32.4 12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238. 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	2100	1.0	95.9	0.7	1.3	0.3	99.1
12hr TTL 27.1 4934.9 115.1 151.0 10.3 5238. 24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	2200	0.0	67.6	0.1	1.4	0.1	69.3
24hr TTL 30.9 5806.9 129.6 191.6 13.4 6172.	2300	0.0	30.1	0.6	1.7	0.0	32.4
	12hr TTL	27.1	4934.9	115.1	151.0	10.3	5238.4
0% 94% 2% 3% 0%	24hr TTL	30.9	5806.9	129.6	191.6	13.4	6172.3
		0%	94%	2%	3%	0%	

			Y AVG ↓	DUND 7-DA	SOUTHEC	
TOTAL	PSV	OGV2	OGV1	CARS / LGV	MOTOR CYCLES	TIME
29.4	0.0	1.3	0.4	27.7	0.0	0000
14.1	0.0	1.0	0.4	12.7	0.0	0100
13.6	0.0	1.3	0.9	11.3	0.1	0200
15.6	0.7	2.3	0.6	12.0	0.0	0300
23.4	0.1	4.7	1.3	17.1	0.1	0400
80.3	0.7	10.1	2.6	66.9	0.0	0500
176.6	0.6	12.4	5.0	156.9	1.7	0600
352.1	1.7	13.6	10.7	325.1	1.0	0700
431.6	1.0	14.0	11.0	404.6	1.0	0800
339.7	1.0	18.0	13.4	306.1	1.1	0900
364.3	0.7	19.0	10.6	332.7	1.3	1000
379.0	1.0	18.0	10.0	348.1	1.9	1100
406.0	1.3	16.7	7.3	377.9	2.9	1200
396.7	0.7	15.1	9.1	369.1	2.6	1300
429.0	0.4	12.9	9.6	402.7	3.4	1400
483.4	1.1	13.3	8.7	456.9	3.4	1500
545.9	0.3	8.0	6.9	527.0	3.7	1600
522.0	1.1	7.3	4.3	506.1	3.1	1700
380.9	1.1	4.7	4.3	369.0	1.7	1800
245.7	0.3	3.0	1.3	240.4	0.7	1900
161.0	0.0	2.7	2.0	155.7	0.6	2000
125.9	0.1	1.6	0.3	123.9	0.0	2100
80.4	0.1	1.0	0.6	78.3	0.4	2200
37.9	0.0	0.7	0.6	36.1	0.4	2300
5030.6	11.6	160.6	105.9	4725.4	27.1	12hr TTL
6034.4	14.3	202.7	121.7	5664.4	31.3	24hr TTL
	0%	3%	2%	94%	1%	

Average daily northbound and southbound volumes by class (condensed to the AQMA scheme), including 12hr totals for 0700-1900 and overall average percentages. Calculated from all available data over 7 days.

CYCLE PROVISION

The diagram compares total daily traffic flow (vertical axis) against the average daily 85% ile speed (horizontal axis) to demonstrate cyclist and vulnerable user considerations.

The guidelines are based on the Sustrans Design Manual (Apr 2014); Understanding User Needs, part 2.

Valid 85% iles are required to plot the graph.

METHODOLOGY

Equipment & methodology

Automatic traffic counts are undertaken using a pair of pneumatic tubes installed securely across the carriageway, one metre apart, recording air pulses to determine vehicle speed, class and volume. The ATC equipment generally remains in place for a consecutive seven day period, and the data analysed post-survey.

In queuing conditions, the accuracy of ATC recording equipment will reduce as follows;

- · 20 30mph: potential reduction of 9% accuracy in volume values
- 10 20mph: potential reduction of 26% accuracy in volume values
 00 10mph: potential reduction of 39% accuracy in volume values
- These figures are based on multiple ATC results compared against

accepted reference values from resilient manual counts.

AADTs are calculated using the seasonal COBA methodology; DMRB Vol. 13, Pt 4:

Weather & environmental

Inclement conditions during winter months or outbreaks of unseasonable weather may affect survey data collection. This can result in distorted traffic flows or unusable data and should be considered prior to survey approval. Although forecast checks are made prior to the survey commencing, A-T-R cannot be held responsible for the forecast accuracy.

CLASS	ABBREV.	DESCRIPTION	LENGTH	COBA
1	MC	Motorcycle	SHORT Up to	N/A
2	sv	Cars, taxis, 4WD, vans	5.5m	CAR &
3	SVT	Class 2 plus trailer	MEDIUM 5.5m to 14.5m	LGV
4	TB2	2 axle truck / bus		OGV1 & PSV
5	TB3	3 axle truck / bus		OGV1
6	T4	4 axle truck		
7	ART3	3 axle articulated		
8	ART4	4 axle articulated		OGV2
9	ART5	5 axle articulated	11.5m to 19.0m	
10	ART6	6+ axle articulated		

Generated 19 Feb 2024 v6.0

30462-004 Camblesforth, Selby. A1041 Bawtry Road. Summary.

Equipment damage & failure

Although checked intermittently the equipment remains unmanned for much of the duration of the survey, and can potentially be interfered with, vandalised, damaged or stolen and A-T-R cannot be held responsible for any periods where data has not been captured.

The equipment is located in accordance with the details provided by the client and A-T-R cannot be held responsible for the accuracy of the data or loss of equipment due to theft and vandalism.

Roadworks & events

Where possible, roadworks checks are made 7 days before the survey commences. Additionally, influencing major local events are also monitored, covering the immediate vicinity of the surveys and any routes likely to affect the outcome of the survey.

Vehicle classifications

Vehicles recorded by the ATC are placed into one of ten classes based on axle spacing and pattern. This scheme is based on the AustRoad 94 algorithm and modified for UK traffic, referred to as ARX. The table on the left aligns the ARX classifications with the COBA Chapter 8 (Vol 13, Sec 1) classifications.

Under adverse conditions the accuracy of ATC classifications will deteriorate and an appropriate link count should be used for validation.

Disclaimer

Although every attempt is made to achieve accuracy, A-T-R may not be held liable for errors of fact or interpretation.

PROJECT	30462 Camblesforth, Selby
LOCATION	30462-005 - Chestercourt Lane
LOC. DESC.	Chestercourt Lane
START DATE	Fri 04 Mar, 2022
END DATE	Thu 10 Mar, 2022
SPEED LIMIT	60mph
SURVEY TYPE	7-day ATC, 15min periods, 6 veh. classes

OVERVIEW

A 7-day automatic traffic count on Chestercourt Lane, commencing Fri 04 Mar 2022, recorded a total of 347 vehicles. The posted speed limit of 60mph was exceeded by 0.0% of vehicles, and the seasonally adjusted, combined AADT value is 58 (see Equipment & Methodology below).

COMBINED

Total recorded volume	347
Avg daily volume (based on 7 days)	49.6
Average daily speed (7 days)	30.3mph
Average daily 85%ile (7 days)	39.9mph
AADT (annual average daily traffic)	58

Avg weekday volume (won-Fri, 24nrs)	51.4
Avg weekday speed (Mon-Fri, 24hrs)	30.6mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	46.2
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	30.1mph

NORTHBOUND ↑

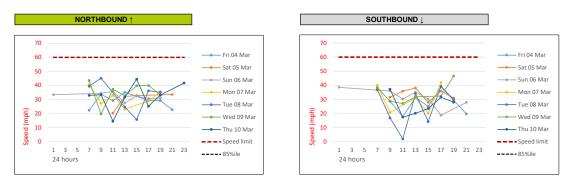
Total recorded volume	182
Avg daily volume (based on 7 days)	26.0
Average daily speed (7 days)	31.9mph
Average daily 85%ile (7 days)	40.9mph
% of vehicles exceeding 60mph	0.0%
Avg weekday volume (Mon-Fri, 24hrs)	27.2
Avg weekday speed (Mon-Fri, 24hrs)	32.5mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	23.2
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	31.6mph
Avg 12hr weekday 85%ile (Mon-Fri, 0700-1900)	41.7mph

The combined summary on the left shows the total volumes, average speeds, AADT and 85% les recorded in both directions from all the recorded data. Speeding vehicles are defined as those travelling 61mph and above.

The summaries below provide directionalised details including speeding percentages and weekday daytime details.

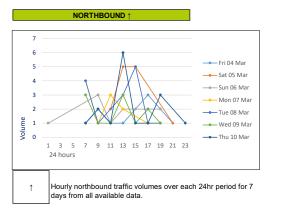
	SOUTHBOUND 1	
--	--------------	--

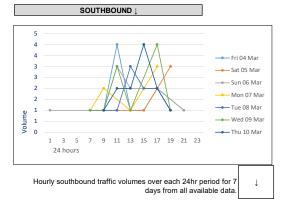
Total recorded volume	165
Avg daily volume (based on 7 days)	23.6
Average daily speed (7 days)	28.8mph
Average daily 85%ile (7 days)	39.0mph
% of vehicles exceeding 60mph	0.0%
Avg weekday volume (Mon-Fri, 24hrs)	24.2
Avg weekday speed (Mon-Fri, 24hrs)	28.8mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	23.0
	28.5mph
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	


SITE LOCATION

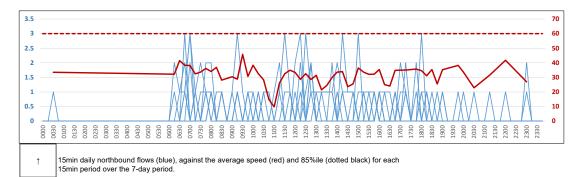
Chestercourt Lane

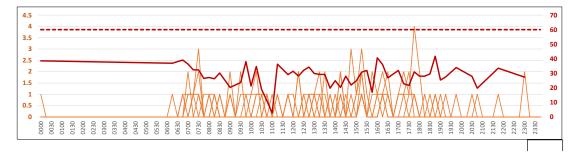
	53°43'56.51"N, 1°	
Lat, Ing.	2'35.50"W	
Project & site	30462-005	
PSL	60mph	
Bus route	No	
Direction 1	Northbound↑	
Direction 2	Southbound⊥	

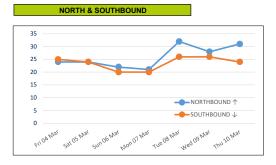

DAILY SPEEDS



Average daily speeds (solid thin colours) and 85% ile (dashed black) compared against 60mph posted speed limit (dashed red). The 85% ile is the speed at which 85% of all vehicles are observed to travel under free flowing conditions. A minimum of ten vehicles per speed bin is required for this calculation, hence the overnight low-volume 85% ile values may be zero.


The peak average northbound daytime speed was 57.8mph at 15:45 on Thu 10 Mar, whilst the peak average southbound speed was 47.3mph at 16:15 on Thu 10 Mar (based on 15min averages between 0700 & 1900).


HOURLY VOLUMES


15min VOL & SPEED

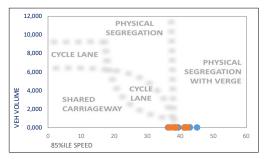
15min daily southbound flows (orange), against the average weekly speed (red) and 85%ile (dotted black) for each 15min period over the 7-day period.

DAILY VOLUMES

Total 24hr northbound (blue) and southbound (orange) traffic volumes over 7 consecutive days from all available data.

Unusually, the lowest volumes were NOT recorded on a Sunday but on the Monday, whilst the highest was on the Tuesday.

SOUTHBOUND 7-DAY AVG


7-DAY AVERAGE CLASSES

	NORTHBO	JUND 7-D	AY AVG ↑			
TIME	MOTOR CYCLES	CARS / LGV	OGV1	OGV2	PSV	TOTAL
0000	0.0	0.1	0.0	0.0	0.0	0.1
0100	0.0	0.0	0.0	0.0	0.0	0.0
0200	0.0	0.0	0.0	0.0	0.0	0.0
0300	0.0	0.0	0.0	0.0	0.0	0.0
0400	0.0	0.0	0.0	0.0	0.0	0.0
0500	0.0	0.0	0.0	0.0	0.0	0.0
0600	0.0	1.9	0.0	0.0	0.0	1.9
0700	0.1	2.7	0.0	0.0	0.0	2.9
0800	0.0	1.3	0.1	0.0	0.0	1.4
0900	0.0	1.6	0.1	0.0	0.0	1.7
1000	0.3	0.9	0.1	0.0	0.0	1.3
1100	0.3	1.3	0.0	0.1	0.0	1.7
1200	0.3	2.3	0.3	0.3	0.0	3.1
1300	0.4	1.4	0.0	0.3	0.0	2.1
1400	0.3	1.4	0.0	0.0	0.3	2.0
1500	0.0	1.7	0.0	0.0	0.0	1.7
1600	0.0	1.3	0.1	0.0	0.0	1.4
1700	0.0	1.7	0.0	0.0	0.0	1.7
1800	0.0	1.4	0.0	0.0	0.0	1.4
1900	0.0	0.4	0.0	0.0	0.0	0.4
2000	0.0	0.3	0.0	0.0	0.0	0.3
2100	0.0	0.1	0.0	0.0	0.0	0.1
2200	0.0	0.1	0.0	0.0	0.0	0.1
2300	0.0	0.4	0.0	0.0	0.0	0.4
12hr TTL	1.7	19.0	0.9	0.7	0.3	22.6
24hr TTL	1.7	22.4	0.9	0.7	0.3	26.0
	7%	86%	3%	3%	1%	

	SOUTHEC					
TIME	MOTOR	CARS /	OGV1	OGV2	PSV	TOTAL
	CYCLES	LGV	UGVI	UGVZ	POV	TOTAL
0000	0.0	0.1	0.0	0.0	0.0	0.1
0100	0.0	0.0	0.0	0.0	0.0	0.0
0200	0.0	0.0	0.0	0.0	0.0	0.0
0300	0.0	0.0	0.0	0.0	0.0	0.0
0400	0.0	0.0	0.0	0.0	0.0	0.0
0500	0.0	0.0	0.0	0.0	0.0	0.0
0600	0.0	0.4	0.0	0.0	0.0	0.4
0700	0.0	2.6	0.0	0.1	0.0	2.7
0800	0.0	1.1	0.0	0.0	0.0	1.1
0900	0.0	1.0	0.1	0.1	0.0	1.3
1000	0.6	1.4	0.0	0.0	0.0	2.0
1100	0.1	0.6	0.0	0.1	0.0	0.9
1200	0.1	1.4	0.0	0.0	0.0	1.6
1300	0.1	1.6	0.0	0.1	0.0	1.9
1400	0.0	1.4	0.0	0.3	0.0	1.7
1500	0.3	2.3	0.0	0.0	0.0	2.6
1600	0.1	2.1	0.1	0.0	0.0	2.4
1700	0.4	2.4	0.0	0.0	0.0	2.9
1800	0.0	0.9	0.0	0.0	0.0	0.9
1900	0.0	0.4	0.0	0.0	0.0	0.4
2000	0.0	0.3	0.0	0.0	0.0	0.3
2100	0.0	0.1	0.0	0.0	0.0	0.1
2200	0.0	0.0	0.0	0.0	0.0	0.0
2300	0.0	0.3	0.0	0.0	0.0	0.3
12hr TTL	1.9	18.9	0.3	0.9	0.0	21.9
24hr TTL	1.9	20.6	0.3	0.9	0.0	23.6
	8%	87%	1%	4%	0%	

Average daily northbound and southbound volumes by class (condensed to the AQMA scheme), including 12hr totals for 0700-1900 and overall average percentages. Calculated from all available data over 7 days.

CYCLE PROVISION

The diagram compares total daily traffic flow (vertical axis) against the average daily 85% ile speed (horizontal axis) to demonstrate cyclist and vulnerable user considerations.

The guidelines are based on the Sustrans Design Manual (Apr 2014); Understanding User Needs, part 2.

Valid 85% iles are required to plot the graph.

METHODOLOGY

Equipment & methodology

Automatic traffic counts are undertaken using a pair of pneumatic tubes installed securely across the carriageway, one metre apart, recording air pulses to determine vehicle speed, class and volume. The ATC equipment generally remains in place for a consecutive seven day period, and the data analysed post-survey.

In queuing conditions, the accuracy of ATC recording equipment will reduce as follows;

- 20 30mph; potential reduction of 9% accuracy in volume values
- 10 20mph: potential reduction of 26% accuracy in volume values 00 - 10mph: potential reduction of 39% accuracy in volume values
- These figures are based on multiple ATC results compared against

accepted reference values from resilient manual counts.

AADTs are calculated using the seasonal COBA methodology; DMRB Vol. 13, Pt 4:

Weather & environmental

Inclement conditions during winter months or outbreaks of unseasonable weather may affect survey data collection. This can result in distorted traffic flows or unusable data and should be considered prior to survey approval. Although forecast checks are made prior to the survey commencing, A-T-R cannot be held responsible for the forecast accuracy.

CLASS	ABBREV.	DESCRIPTION	LENGTH	COBA
1	MC	Motorcycle	SHORT Up to	N/A
2	sv	Cars, taxis, 4WD, vans	5.5m	CAR &
3	SVT	Class 2 plus trailer		LGV
4	TB2	2 axle truck / bus	MEDIUM	OGV1 & PSV
5	TB3	3 axle truck / bus	5.5m to ck / bus 14.5m	
6	T4	4 axle truck		
7	ART3	3 axle articulated		
8	ART4	4 axle articulated	LONG	OGV2
9	ART5	5 axle articulated	11.5m to 19.0m	
10	ART6	6+ axle articulated		

19 Feb 2024 v6.0 Generated 30462-005 Camblesforth, Selby. Chestercourt Lane. Summary.xl

Equipment damage & failure

Although checked intermittently the equipment remains unmanned for much of the duration of the survey, and can potentially be interfered with, vandalised, damaged or stolen and A-T-R cannot be held responsible for any periods where data has not been captured.

The equipment is located in accordance with the details provided by the client and A-T-R cannot be held responsible for the accuracy of the data or loss of equipment due to theft and vandalism.

Roadworks & events

Where possible, roadworks checks are made 7 days before the survey commences. Additionally, influencing major local events are also monitored, covering the immediate vicinity of the surveys and any routes likely to affect the outcome of the survey.

Vehicle classifications

Vehicles recorded by the ATC are placed into one of ten classes based on axle spacing and pattern. This scheme is based on the AustRoad 94 algorithm and modified for UK traffic, referred to as ARX. The table on the left aligns the ARX classifications with the COBA Chapter 8 (Vol 13, Sec 1) classifications.

Under adverse conditions the accuracy of ATC classifications will deteriorate and an appropriate link count should be used for validation.

Disclaimer

Although every attempt is made to achieve accuracy, A-T-R may not be held liable for errors of fact or interpretation.

PROJECT	30462 Camblesforth, Selby
LOCATION	30462-007 - Hardenshaw Lane
LOC. DESC.	Hardenshaw Lane
START DATE	Fri 04 Mar, 2022
END DATE	Thu 10 Mar, 2022
SPEED LIMIT	60mph
SURVEY TYPE	7-day ATC, 15min periods, 6 veh. classes

OVERVIEW

A 7-day automatic traffic count on Hardenshaw Lane, commencing Fri 04 Mar 2022, recorded a total of 728 vehicles. The posted speed limit of 60mph was exceeded by 0.0% of vehicles, and the seasonally adjusted, combined AADT value is 120 (see Equipment & Methodology below).

COMBINED

Total recorded volume	728
Avg daily volume (based on 7 days)	104.0
Average daily speed (7 days)	30.1mph
Average daily 85%ile (7 days)	38.3mph
AADT (annual average daily traffic)	120

Avg weekday volume (Mon-Fri, 24nrs)	91.8
Avg weekday speed (Mon-Fri, 24hrs)	29.8mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	76.4
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	29.1mph

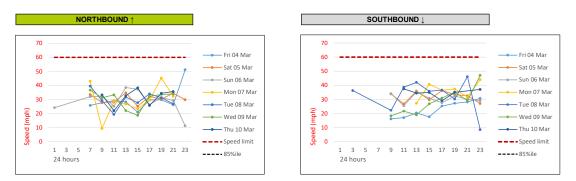
NORTHBOUND ↑

Total recorded volume	373
Avg daily volume (based on 7 days)	53.3
Average daily speed (7 days)	29.5mph
Average daily 85%ile (7 days)	37.5mph
% of vehicles exceeding 60mph	0.0%
Avg weekday volume (Mon-Fri, 24hrs)	47.8
Avg weekday speed (Mon-Fri, 24hrs)	29.2mph
Avg 12hr weekday volume (Mon-Fri, 0700-1900)	40.6
Avg 12hr weekday speed (Mon-Fri, 0700-1900)	28.5mph
Avg 12hr weekday 85%ile (Mon-Fri, 0700-1900)	37.3mph

The combined summary on the left shows the total volumes, average speeds, AADT and 85% les recorded in both directions from all the recorded data. Speeding vehicles are defined as those travelling 61mph and above.

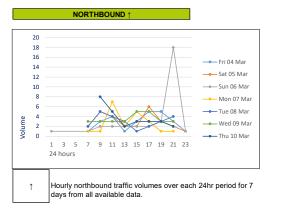
The summaries below provide directionalised details including speeding percentages and weekday daytime details.

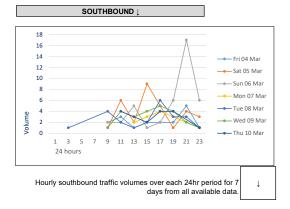
SOUTHBOUND J


Total recorded volume	355
Avg daily volume (based on 7 days)	50.7
Average daily speed (7 days)	30.6mph
Average daily 85%ile (7 days)	39.0mph
% of vehicles exceeding 60mph	0.0%
78 OF VEHICLES EXCEEDING OUTIPH	0.070
	0.070
<u> </u>	44.0
Avg weekday volume (Mon-Fri, 24hrs)	
Avg weekday volume (Mon-Fri, 24hrs) Avg weekday speed (Mon-Fri, 24hrs)	44.0
Avg weekday volume (Mon-Fri, 24hrs) Avg weekday speed (Mon-Fri, 24hrs) Avg 12hr weekday volume (Mon-Fri, 0700-1900) Avg 12hr weekday speed (Mon-Fri, 0700-1900)	44.0 30.3mph

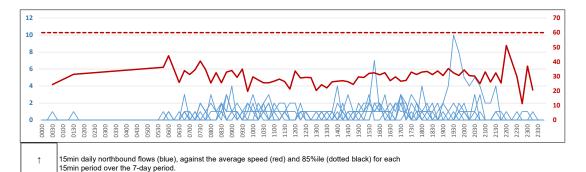
SITE LOCATION

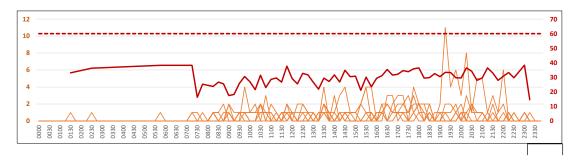
Location	Hardenshaw Lane
	53°43'40.44"N, 1°
Lat, Ing.	2'17.43"W
Project & site	30462-007
PSL	60mph
Bus route	No
Direction 1	Northbound↑
Direction 2	Southbound↓

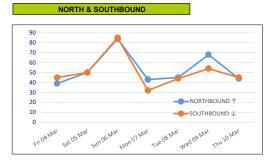

DAILY SPEEDS



Average daily speeds (solid thin colours) and 85% ile (dashed black) compared against 60mph posted speed limit (dashed red). The 85% ile is the speed at which 85% of all vehicles are observed to travel under free flowing conditions. A minimum of ten vehicles per speed bin is required for this calculation, hence the overnight low-volume 85% ile values may be zero.


The peak average northbound daytime speed was 45.3mph at 18:00 on Mon 07 Mar, whilst the peak average southbound speed was 45.6mph at 17:45 on Wed 09 Mar (based on 15min averages between 0700 & 1900).


HOURLY VOLUMES


15min VOL & SPEED

15min daily southbound flows (orange), against the average weekly speed (red) and 85%ile (dotted black) for each 15min period over the 7-day period.

DAILY VOLUMES

Total 24hr northbound (blue) and southbound (orange) traffic volumes over 7 consecutive days from all available data.

Unusually, the lowest volumes were NOT recorded on a Sunday but on the Monday, whilst the highest was on the Sunday.


7-DAY AVERAGE CLASSES

	NORTHB	DUND 7-D	AY AVG ↑			
TIME	MOTOR CYCLES	CARS / LGV	OGV1	OGV2	PSV	TOTAL
0000	0.0	0.1	0.0	0.0	0.0	0.1
0100	0.0	0.1	0.0	0.0	0.0	0.1
0200	0.0	0.0	0.0	0.0	0.0	0.0
0300	0.0	0.0	0.0	0.0	0.0	0.0
0400	0.0	0.0	0.0	0.0	0.0	0.0
0500	0.0	0.1	0.0	0.0	0.0	0.1
0600	0.0	1.4	0.0	0.0	0.0	1.4
0700	0.0	1.7	0.0	0.0	0.0	1.7
0800	0.6	3.3	0.0	0.0	0.0	3.9
0900	0.3	3.1	0.0	0.0	0.0	3.4
1000	0.3	3.6	0.1	0.1	0.0	4.1
1100	0.4	2.1	0.0	0.1	0.0	2.7
1200	0.0	2.0	0.0	0.1	0.0	2.1
1300	0.6	1.1	0.0	0.0	0.0	1.7
1400	0.3	2.7	0.0	0.0	0.0	3.0
1500	0.1	4.7	0.0	0.1	0.0	5.0
1600	0.0	3.7	0.0	0.0	0.0	3.7
1700	0.3	4.4	0.0	0.0	0.0	4.7
1800	0.0	3.0	0.0	0.0	0.0	3.0
1900	0.0	5.1	0.1	0.0	0.0	5.3
2000	0.0	4.7	0.0	0.0	0.0	4.7
2100	0.0	1.6	0.0	0.0	0.0	1.6
2200	0.0	0.4	0.0	0.0	0.0	0.4
2300	0.0	0.3	0.0	0.0	0.0	0.3
12hr TTL	2.9	35.6	0.1	0.6	0.0	39.1
24hr TTL	2.9	49.6	0.3	0.6	0.0	53.3
	5%	93%	1%	1%	0%	

	SOUTHBO	DUND 7-DA	Y AVG ↓		-	
TIME	MOTOR CYCLES	CARS / LGV	OGV1	OGV2	PSV	TOTAL
0000	0.0	0.0	0.0	0.0	0.0	0.0
0100	0.0	0.1	0.0	0.0	0.0	0.1
0200	0.0	0.1	0.0	0.0	0.0	0.1
0300	0.0	0.0	0.0	0.0	0.0	0.0
0400	0.0	0.0	0.0	0.0	0.0	0.0
0500	0.0	0.1	0.0	0.0	0.0	0.1
0600	0.0	0.0	0.0	0.0	0.0	0.0
0700	0.0	0.6	0.0	0.0	0.0	0.6
0800	0.0	1.4	0.0	0.0	0.0	1.4
0900	0.6	2.3	0.0	0.0	0.0	2.9
1000	0.3	2.3	0.1	0.3	0.0	3.0
1100	0.0	2.3	0.0	0.0	0.0	2.3
1200	0.1	2.3	0.0	0.0	0.0	2.4
1300	0.0	3.0	0.0	0.0	0.0	3.0
1400	0.0	3.1	0.0	0.1	0.0	3.3
1500	0.0	3.7	0.0	0.1	0.0	3.9
1600	0.0	4.0	0.0	0.0	0.0	4.0
1700	0.0	5.1	0.0	0.0	0.0	5.1
1800	0.0	3.3	0.0	0.0	0.0	3.3
1900	0.1	5.0	0.1	0.0	0.0	5.3
2000	0.0	4.7	0.0	0.0	0.0	4.7
2100	0.0	2.6	0.0	0.0	0.0	2.6
2200	0.0	2.0	0.0	0.0	0.0	2.0
2300	0.0	0.6	0.0	0.0	0.0	0.6
2hr TTL	1.0	33.4	0.1	0.6	0.0	35.1
4hr TTL	1.1	48.7	0.3	0.6	0.0	50.7
	2%	96%	1%	1%	0%	

Average daily northbound and southbound volumes by class (condensed to the AQMA scheme), including 12hr totals for 0700-1900 and overall average percentages. Calculated from all available data over 7 days.

CYCLE PROVISION

The diagram compares total daily traffic flow (vertical axis) against the average daily 85% ile speed (horizontal axis) to demonstrate cyclist and vulnerable user considerations.

The guidelines are based on the Sustrans Design Manual (Apr 2014); Understanding User Needs, part 2.

Valid 85% iles are required to plot the graph.

METHODOLOGY

Equipment & methodology

Automatic traffic counts are undertaken using a pair of pneumatic tubes installed securely across the carriageway, one metre apart, recording air pulses to determine vehicle speed, class and volume. The ATC equipment generally remains in place for a consecutive seven day period, and the data analysed post-survey.

In queuing conditions, the accuracy of ATC recording equipment will reduce as follows;

- · 20 30mph: potential reduction of 9% accuracy in volume values
- 10 20mph: potential reduction of 26% accuracy in volume values
 00 10mph: potential reduction of 39% accuracy in volume values
- These figures are based on multiple ATC results compared against

accepted reference values from resilient manual counts.

AADTs are calculated using the seasonal COBA methodology; DMRB Vol. 13, Pt 4:

Weather & environmental

Inclement conditions during winter months or outbreaks of unseasonable weather may affect survey data collection. This can result in distorted traffic flows or unusable data and should be considered prior to survey approval. Although forecast checks are made prior to the survey commencing, A-T-R cannot be held responsible for the forecast accuracy.

CLASS	ABBREV.	DESCRIPTION	LENGTH	COBA
1	MC	Motorcycle	SHORT Up to	N/A
2	sv	Cars, taxis, 4WD, vans	5.5m	CAR &
3	SVT	Class 2 plus trailer		LGV
4	TB2	2 axle truck / bus	MEDIUM 5.5m to	OGV1 & PSV
5	TB3	3 axle truck / bus	14.5m	OGV1
6	T4	4 axle truck		
7	ART3	3 axle articulated		
8	ART4	4 axle articulated	LONG 11.5m to	OGV2
9	ART5	5 axle articulated	19.0m	
10	ART6	6+ axle articulated		

Generated	19 Feb 2024	v6.0
30462-007 Camblesfort	h, Selby. Hardenshaw Lane	. Summary.xl

Equipment damage & failure

Although checked intermittently the equipment remains unmanned for much of the duration of the survey, and can potentially be interfered with, vandalised, damaged or stolen and A-T-R cannot be held responsible for any periods where data has not been captured.

The equipment is located in accordance with the details provided by the client and A-T-R cannot be held responsible for the accuracy of the data or loss of equipment due to theft and vandalism.

Roadworks & events

Where possible, roadworks checks are made 7 days before the survey commences. Additionally, influencing major local events are also monitored, covering the immediate vicinity of the surveys and any routes likely to affect the outcome of the survey.

Vehicle classifications

Vehicles recorded by the ATC are placed into one of ten classes based on axle spacing and pattern. This scheme is based on the AustRoad 94 algorithm and modified for UK traffic, referred to as ARX. The table on the left aligns the ARX classifications with the COBA Chapter 8 (Vol 13, Sec 1) classifications.

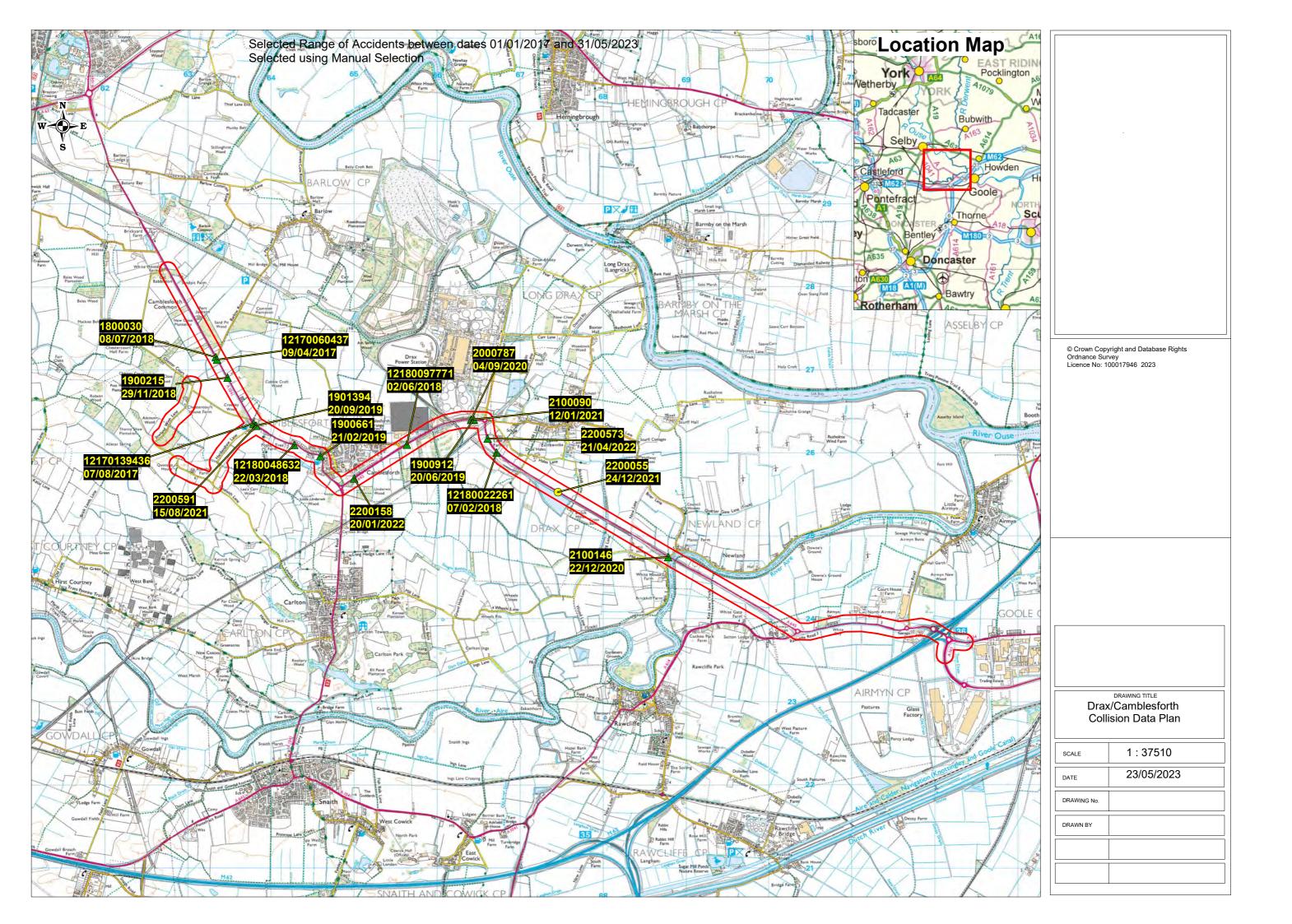
Under adverse conditions the accuracy of ATC classifications will deteriorate and an appropriate link count should be used for validation.

Disclaimer

Although every attempt is made to achieve accuracy, A-T-R may not be held liable for errors of fact or interpretation.

nt_poiry	ar regi	on_id region_nai loca	al_auth local_auth road_na	am road_typ	pe start_ju	nct end_jund	cti easting r	northing latitude	longitude lin	k_lengthlir	Ik_length estimation estimation direction		o_whee ca	ars_and_ibu	ses_and lg	vs hgv	/s_2_rig hgv	s_3_rig hgv	s_4_or_hgv	s_3_or_hg	vs_5_arihg	vs_6_artall	_hgvs al	_motor_vehicles
60060	2014	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	22	36	5810	53	1123	95	23	67	87	275	244	791	7814
60060	2014	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	16	35	5503	51	952	86	40	47	78	198	300	749	7290
60060	2015	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	22	36	5770	54	1223	99	25	70	110	280	249	833	7916
60060	2015	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	16	35	5465	52	1037	90	45	49	98	201	306	790	7378
60060	2017	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co E	25	90	5207	57	932	58	25	41	82	173	111	491	6776
60060	2017	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co W	11	101	5106	48	943	79	18	39	43	132	214	525	6723
60060	2009	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co E	11	48	4564	57	781	107	31	44	82	130	190	584	6034
60060	2009	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co W	5	46	4608	50	777	89	37	32	95	137	159	549	6030
60060	2008	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	9	38	4504	88	1069	238	36	48	31	96	274	723	6422
60060	2008	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	3	44	4662	62	822	211	34	48	46	96	191	626	6216
60060	2007	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	9	36	4653	84	1030	242	32	46	34	106	273	733	6536
60060	2007	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	3	42	4816	58	792	214	31	46	51	106	190	638	6346
60060	2006	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	9	35	4616	76	909	227	30	39	38	105	250	689	6325
60060	2006	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	3	40	4778	53	699	200	29	39	56	106	175	605	6175
60060	2003	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	9	36	4584	81	775	226	30	32	46	142	186	662	6138
60060	2003	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	3	41	4745	57	596	200	29	32	69	143	130	603	6042
60060	2005	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	9	35	4616	70	847	231	32	38	39	111	219	670	6238
60060	2005	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	3	41	4778	49	651	204	30	38	59	112	153	596	6115
60060	2004	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	9	40	4588	69	818	234	33	36	44	127	207	681	6196
60060	2004	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	3	46	4750	48	629	207	32	36	66	128	144	613	6086
60060	2002	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	11	33	4525	90	691	223	28	29	48	160	169	657	5996
60060	2002	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	4	38	4684	63	531	197	27	29	72	161	118	604	5920
60060	2001	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	10	32	4432	77	659	214	25	26	51	178	149	643	5843
60060	2001	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	4	37	4588	54	507	189	24	26	77	179	104	599	5785
60060	2012	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	9	44	4437	63	855	107	34	46	50	104	188	528	5927
60060	2012	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	4	43	4480	56	851	89	40	33	58	111	157	488	5918
60060	2000	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co E	11	31	4249	71	651	212	21	25	58	208	133	657	5659
60060	2000	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co W	4	36	4399	50	501	187	20	25	88	209	93	622	5608
60060	2013	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co E	28	33	5825	51	1079	97	21	64	90	307	236	816	7804
60060	2013	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co W	20	32	5517	49	915	88	38	45	80	221	291	763	7275
60060	2011	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	10	47	4473	61	827	108	32	41	67	110	185	543	5951
60060	2011	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	4	46	4516	54	823	90	38	30	78	117	155	508	5947
60060	2021	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co E	43	68	4578	42	966	84	25	67	20	46	246	488	6143
60060	2021	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Counted Manual co W	22	61	4333	46	1057	83	21	76	21	45	283	530	6028
60060	2010	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	11	43	4500	59	805	112	31	38	91	117	183	572	5979
60060	2010	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	5	42	4543	52	801	93	37	28	106	124	153	541	5979
60060	2016	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	16	35	5532	51	1120	94	43	57	101	188	316	799	7537
60060	2016	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	22	36	5841	53	1321	104	24	80	113	261	257	840	8091
60060	2018	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	25	87	5182	54	976	59	26	44	82	173	114	497	6797
60060	2018	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	11	99	5081	46	987	80	18	42	43	132	218	533	6746
60060	2019	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	30	94	5194	53	973	58	27	45	83	173	113	500	6814
60060	2019	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated W	13	106	5092	45	984	79	19	43	43	133	216	534	6762
60060	2020	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716	-0.92588	1.8	1.12 Estimated Estimated E	38	70	3793	34	833	53	23	40	74	158	101	449	5179
60060	2020	8 Yorkshire a	89 East Riding A614	Major	A645	M62	471000	423950 53.70716		1.8	1.12 Estimated Estimated W	17	79	3719	29	842	71	17	38	39	121	193	479	5148
,500	2020	o torksmiller		major	7.5-5	11102	-71000	.2000 00.10/10	0.52500	1.0	2.22 Estimated Estimated W	1/	,,,	5,15	25	042	, 1	1/	50	35		155	475	51-0

Monthly report for SiteId : 9647


Nov-23

24 Hour Flows by Day of Month

2411001110	ws by Day c																							
Mon F	low 6	.6m T	lue l	Flow 6	.6m \	Ned F					.6m Fr	i Fl		.6m Sa	at Fl		6m Su			.6m				
						1	29780	26.3	2	28148	26.8	3	22918	20.1	4	19924	12.7	5	21623	9.2				
6	28603	26.7	7	26472	27.2	8	21892	26.4	9	24596	26	10	27275	24.1	11	20685	11	12	21381	8.8				
13	28281	28.2	14	27255	28.1	15	27752	28.3	16	28214	27.9	17	28772	24.4	18	19487	12.3	19	21293	8.5				
20	28372	27.7	21	27821	28.8	22	27935	28.3	23	28674	28.2	24	29053	24.3	25	20288	12.2	26	22000	8.8				
27	28689	27.7	28	27994	28.2	29	28208	27.9	30	28086	27.6													
Average Flo																								
							Sun											A		WT				
24hr	28486	27386	27113	27544	27005	20096	21574												25904	28038				
%>6.6m	28%	28%	28%	27%	23%	12%	9%												23.1	27.1				
18hr %>6.6m	26516 0.265	25789 0.268	25492 0.261	25940 0.26	25806 0.221	19157 10.5	20772 8.1												24461 21.8	26354 25.8				
16hr	26237	25432	25139	25558	25431	18650	20428												24084	25997				
%>6.6m	26.4	26.7	25155	2558	23431	10.5	7.8												24084	25.7				
12hr	23087	22500	22212	22605	22969	16861	18423												21426	23019				
%>6.6m	26.2	22300	25.8	25.8	22505	9.9	7.4												21.4	25.5				
No.days	4	20.7	25.0	25.0	4	4	4												21.4	25.5				
Average Ho	-	-	5	5	-	7	-																	
Mon	95	93	108	195	443	1038	1857	2513	2172	1825	1856	1818	1717	1805	1954	2147	2279	1918	1085	639	404	250	175	104
Tue	88	90	100	132	358	829	1674	2483	2103	1776	1617	1658	1371	1779	1969	2209	2398	1991	1147	662	371	224	224	134
Wed	89	96	122	158	358	798	1636	2360	2174	1796	1613	1673	1731	1622	1985	2256	2462	2053	1166	664	378	250	215	138
Thur	97	94	115	161	340	796	1590	2316	2083	1777	1637	1640	1694	1752	1915	2208	2317	2043	1225	694	404	264	244	139
Fri	93	93	133	182	333	733	1375	1954	1881	1754	1997	2092	2031	2254	2303	2258	2242	1902	1262	755	415	262	202	173
Sat	116	97	99	128	189	312	524	723	1148	1635	1901	1932	1742	1527	1375	1357	1366	1214	941	549	409	308	298	209
Sun	144	107	95	94	144	219	344	484	766	1293	1791	1951	1954	1861	1901	1923	1881	1559	1060	792	539	331	218	126
Monthly rep	ort for Site	ld : 9737																						
Nov-23																								
Nov-23 24 Hour Flov	ws by Day c	of Month																						
24 Hour Flov			Fue I	Flow 6	5.6m \	Wed F			hur F		.6m Fr	i Fl	low 6	.6m Sa	at Fl		6m Su	in F	low 6	.6m				
24 Hour Flov	low 6	.6m T	lue I			Wed F 1	28995	27.8	hur F 2	28709	28.3	i Fl 3	25188	20.1	at Fl 4	20452	13	ın F 5	18918	10.3				
24 Hour Flov	low 6 27699	.6m T 27.5	Tue T	27689	29.1		28995 23944	27.8 28.2		28709 27513	28.3 27.7		25188 31595	20.1 24.6		20452 21789	13 12.2	5 12	18918 18316	10.3 10.2				
24 Hour Flow Mon F 6 13	low 6 27699 26605	.6m T 27.5 29.1	7 14	27689 26941	29.1 30.2	1 8 15	28995 23944 27808	27.8 28.2 29.4	2 9 16	28709 27513 28777	28.3 27.7 28.8	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19	18918 18316 19054	10.3 10.2 9.8				
24 Hour Flow Mon F 13 20	low 6 27699 26605 27085	.6m T 27.5 29.1 28.4	7 14 21	27689 26941 27553	29.1 30.2 30	1 8 15 22	28995 23944 27808 28134	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10	25188 31595	20.1 24.6	4 11	20452 21789	13 12.2	5 12	18918 18316	10.3 10.2				
24 Hour Flow Mon F 13 20 27	low 6 27699 26605 27085 27258	.6m T 27.5 29.1	7 14	27689 26941	29.1 30.2	1 8 15	28995 23944 27808	27.8 28.2 29.4	2 9 16	28709 27513 28777	28.3 27.7 28.8	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19	18918 18316 19054	10.3 10.2 9.8				
24 Hour Flow Mon F 13 20 27 Average Flow	low 6 27699 26605 27085 27258 ws	.6m T 27.5 29.1 28.4 28.2	7 14 21 28	27689 26941 27553 28434	29.1 30.2 30 29.5	1 8 15 22 29	28995 23944 27808 28134 28404	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692	10.3 10.2 9.8 10.1				
24 Hour Flow Mon F 13 20 27 Average Flow	low 6 27699 26605 27085 27258 ws Non T	.6m T 27.5 29.1 28.4 28.2	7 14 21 28 Wed	27689 26941 27553 28434 Thur F	29.1 30.2 30 29.5	1 8 15 22 29 Sat 5	28995 23944 27808 28134 28404	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A	10.3 10.2 9.8 10.1 WT				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr	low 6 27699 26605 27085 27258 ws Aon T 27162	.6m T 27.5 29.1 28.4 28.2 ue V 27654	7 14 21 28 Wed 27457	27689 26941 27553 28434 Thur F 28670	29.1 30.2 30 29.5 ri S 30073	1 8 15 22 29 Sat S 21121	28995 23944 27808 28134 28404 Sun 18995	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096	10.3 10.2 9.8 10.1 WT 28638				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m	low 6 27699 26605 27085 27258 ws Aon T 27162 28%	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30%	7 14 21 28 Wed 27457 29%	27689 26941 27553 28434 Thur F 28670 29%	29.1 30.2 30 29.5 rri S 30073 24%	1 8 15 22 29 Sat S 21121 13%	28995 23944 27808 28134 28404 Sun 18995 10%	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3	10.3 10.2 9.8 10.1 WT 28638 28.1				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177	7 14 21 28 Wed 27457 29% 25969	27689 26941 27553 28434 Thur F 28670 29% 27214	29.1 30.2 30 29.5 rri 5 30073 24% 28884	1 8 15 22 29 5at 5 21121 13% 20034	28995 23944 27808 28134 28404 5000 18995 10% 18137	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790	10.3 10.2 9.8 10.1 WT 28638 28.1 27193				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286	7 14 21 28 Wed 27457 29% 25969 0.278	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278	29.1 30.2 30 29.5 rri 29 30073 24% 28884 0.228	1 8 15 22 29 Sat 9 21121 13% 20034 11.1	28995 23944 27808 28134 28404 5000 18995 10% 18137 9.3	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 18hr 16hr	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25345	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596	7 14 21 28 Wed 27457 29% 25969 0.278 25367	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601	29.1 30.2 30 29.5 7ri 5 30073 24% 28884 0.228 28205	1 8 15 22 29 Sat S 21121 13% 20034 11.1 19338	28995 23944 27808 28134 28404 5000 18995 10% 18137 9.3 17643	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25841 0.28 25345 27.9	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596 28.6	7 14 21 28 Wed 27457 29% 25969 0.278 25367 27.8	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7	29.1 30.2 30 29.5 ri 30073 24% 28884 0.228 28205 22.9	1 8 15 22 29 Sat S 21121 13% 20034 11.1 19338 11.1	28995 23944 27808 28134 28404 5000 18995 10% 18137 9.3 17643 9	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 16hr %>6.6m 12hr	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25841 0.28 25345 27.9 21854	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596 28.6 21945	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657	29.1 30.2 30 29.5 71 29.5 30073 24% 28884 0.228 28205 22.9 24570	1 8 15 22 29 5at 5 21121 13% 20034 11.1 19338 11.1 16965	28995 23944 27808 28134 28404 3000 18995 10% 18137 9.3 17643 9 15280	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3 20831	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 26587 27.2 22814				
24 Hour Flow Mon F 13 20 27 Average Flow X 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 16hr %>6.6m 12hr %>6.6m	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25841 0.28 25345 27.9	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596 28.6	7 14 21 28 Wed 27457 29% 25969 0.278 25367 27.8	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7	29.1 30.2 30 29.5 ri 30073 24% 28884 0.228 28205 22.9	1 8 15 22 29 5at 5 21121 13% 20034 11.1 19338 11.1 16965 10.6	28995 23944 27808 28134 28404 5000 18995 10% 18137 9.3 17643 9	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 12hr %>6.6m 12hr %>6.6m No.days	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25841 0.28 25345 27.9 21854 28.4 4	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596 28.6 21945 29 4	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3	29.1 30.2 30 29.5 30073 24% 28884 0.228 28205 22.9 24570 23.3	1 8 15 22 29 5at 5 21121 13% 20034 11.1 19338 11.1 16965	28995 23944 27808 28134 28404 500 18995 10% 18137 9.3 17643 9 15280 8.6	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3 20831	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 26587 27.2 22814				
24 Hour Flow Mon F 13 20 27 Average Flow X 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 16hr %>6.6m 12hr %>6.6m	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25345 27.9 21854 27.9 21854 28.4 4 urly Variatio	.6m T 27.5 29.1 28.4 28.2 28.2 28.6 27654 30% 26177 0.286 25596 28.6 21945 29 4 20	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1 5	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3	29.1 30.2 30 29.5 7ri 29 30073 24% 28884 0.228 28205 22.9 24570 23.3 4	1 8 15 22 29 Sat 9 21121 13% 20034 11.1 19338 11.1 16965 10.6 4	28995 23944 27808 28134 28404 500 18995 10% 18137 9.3 17643 9 15280 8.6	27.8 28.2 29.4 29.6	2 9 16 23	28709 27513 28777 29491	28.3 27.7 28.8 29.6	3 10 17	25188 31595 31392	20.1 24.6 24.8	4 11 18	20452 21789 20795 21446	13 12.2 12.6 12.8	5 12 19 26	18918 18316 19054 19692 ADT A 26096 24.3 24790 23.4 24188 23.3 20831 23.6	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 26587 27.2 22814 27.7	536	453	289	207
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 12hr %>6.6m 12hr %>6.6m No.days Average Hou	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25841 0.28 25345 27.9 21854 28.4 4	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596 28.6 21945 29 4	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3 5	29.1 30.2 30 29.5 30073 24% 28884 0.228 28205 22.9 24570 23.3	1 8 15 22 29 5at 5 21121 13% 20034 11.1 19338 11.1 16965 10.6	28995 23944 27808 28134 28404 300 18995 10% 18137 9.3 17643 9 15280 8.6 4	27.8 28.2 29.4 29.6 29.1	2 9 16 23 30	28709 27513 28777 29491 28862	28.3 27.7 28.8 29.6 29.4	3 10 17 24	25188 31595 31392 32117	20.1 24.6 24.8 24.9	4 11 18 25	20452 21789 20795	13 12.2 12.6	5 12 19 26	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3 20831	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 26587 27.2 22814	536 580	453 466	289 317	207 264
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 16hr %>6.6m 12hr %>6.6m 12hr %>6.6m No.days Average Hou Mon	low 6 27699 26605 27085 27085 27258 ws Aon T 27162 28% 25841 0.28 25345 27.9 21854 27.9 21854 28.4 4 urly Variatio 156	.6m T 27.5 29.1 28.4 28.2 28.2 200 27654 30% 26177 0.286 25596 28.6 21945 28.6 21945 29 4 00 109	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1 5 85	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3 5 114	29.1 30.2 30 29.5 30073 24% 28884 0.228 28205 22.9 24570 23.3 4 195	1 8 15 22 29 5at 5 21121 13% 20034 11.1 19338 11.1 16965 10.6 4 662	28995 23944 27808 28134 28404 3000 18995 10% 18137 9.3 17643 9 15280 8.6 4 1722	27.8 28.2 29.4 29.6 29.1	2 9 16 23 30	28709 27513 28777 29491 28862	28.3 27.7 28.8 29.6 29.4	3 10 17 24 1573	25188 31595 31392 32117 1512	20.1 24.6 24.8 24.9 1640	4 11 18 25	20452 21789 20795 21446	13 12.2 12.6 12.8	5 12 19 26 A	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3 20831 23.6 1293	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 26587 27.2 22814 27.7				
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 16hr %>6.6m 12hr %>6.6m 12hr %>6.6m No.days Average Hou Mon Tue	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25345 27.9 21854 27.9 21854 28.4 4 urly Variation 156 176	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596 28.6 21945 29 4 00 109 126	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1 5 85 124	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3 5 114 153	29.1 30.2 30 29.5 30073 24% 28884 0.228 28205 22.9 24570 23.3 4 195 197	1 8 15 22 29 6at 9 21121 13% 20034 11.1 19338 11.1 16965 10.6 4 662 703	28995 23944 27808 28134 28404 18995 10% 18137 9.3 17643 9 15280 8.6 4 1722 1695	27.8 28.2 29.4 29.6 29.1 25.1 2556	2 9 16 23 30	28709 27513 28777 29491 28862 8862 1833 1859	28.3 27.7 28.8 29.6 29.4 1620 1580	3 10 17 24 1573 1494	25188 31595 32117 32117 1512 1334	20.1 24.6 24.8 24.9 1640 1568	4 11 18 25 1727 1692	20452 21789 20795 21446 1853 1903	13 12.2 12.6 12.8 2084 2155	5 12 19 26 A 2003 2003	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3 20831 23.6 1293 1438	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 26587 27.2 22814 27.7 780 910	580	466	317	264
24 Hour Flow Mon F 13 20 27 Average Flo 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 12hr %>6.6m 12hr %>6.6m 12hr %>6.6m No.days Average Hou Mon Tue Wed	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25841 0.28 25345 27.9 21854 28.4 4 urly Variatio 156 176 195	.6m T 27.5 29.1 28.4 28.2 ue V 27654 30% 26177 0.286 25596 28.6 21945 29 4 00 109 126 144	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1 5 85 124 113	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3 5 114 153 146	29.1 30.2 30 29.5 30073 24% 28884 0.228 28205 22.9 24570 23.3 4 195 197 213	1 8 15 22 29 Sat 5 21121 13% 20034 11.1 19338 11.1 16965 10.6 4 662 703 678	28995 23944 27808 28134 28404 18995 10% 18137 9.3 17643 9 15280 8.6 4 1722 1695 1700	27.8 28.2 29.4 29.6 29.1 25.1 2556 2424	2 9 16 23 30 20 8 2208 2286 2196	28709 27513 28777 29491 28862 8862 1883 1859 1871	28.3 27.7 28.8 29.6 29.4 1620 1580 1626	3 10 17 24 1573 1494 1548	25188 31595 32117 32117 1512 1334 1523	20.1 24.6 24.8 24.9 1640 1568 1470	4 11 18 25 1727 1692 1749	20452 21789 20795 21446 1853 1903 1978	13 12.2 12.6 12.8 2084 2155 2252	5 12 19 26 A 2003 2081 2226	18918 18316 19054 19692 ADT A 26096 24.3 24790 23.4 24188 23.3 20831 23.6 1293 1438 1461	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 22814 27.7 780 910 923	580 590	466 447	317 348	264 255
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 12hr %>6.6m 12hr %>6.6m 12hr %>6.6m No.days Average Hou Mon Tue Wed Thur	low 6 27699 26605 27085 27258 ws Aon T 27162 28% 25841 0.28 25841 0.28 25345 27.9 21854 28.4 4 urly Variation 156 176 195 183	.6m T 27.5 29.1 28.4 28.2 0ue V 27654 30% 26177 0.286 25596 28.6 21945 29 4 0n 109 126 144 143	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1 5 85 124 113 122	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3 5 114 153 146 138	29.1 30.2 30 29.5 30073 24% 28884 0.228 28205 22.9 24570 23.3 4 195 197 213 208	1 8 15 22 29 Sat 21 21121 13% 20034 11.1 19338 11.1 16965 10.6 4 662 703 678 662	28995 23944 27808 28134 28404 18995 10% 18137 9.3 17643 9 15280 8.6 4 1722 1695 1700 1688	27.8 28.2 29.4 29.6 29.1 29.1 25.1 2556 2424 2468	2 9 16 23 30 30 228 2208 2208 2286 2196 2308	28709 27513 28777 29491 28862 18862 1833 1859 1871 1761	28.3 27.7 28.8 29.6 29.4 1620 1580 1626 1614	3 10 17 24 1573 1573 1494 1548 1546	25188 31595 32117 32117 1512 1334 1523 1539	20.1 24.6 24.8 24.9 1640 1568 1470 1640	4 11 18 25 1727 1692 1749 1715	20452 21789 20795 21446 1853 1903 1978 2004	13 12.2 12.6 12.8 2084 2155 2252 2216	5 12 19 26 A 2003 2003 2081 2226 2242	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3 20831 23.6 1293 1438 1461 1604	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 22814 27.7 780 910 923 1007	580 590 706	466 447 543	317 348 347	264 255 266
24 Hour Flow Mon F 13 20 27 Average Flow 24hr %>6.6m 18hr %>6.6m 16hr %>6.6m 16hr %>6.6m 12hr %>6.6m 12hr %>6.6m No.days Average Hou Mon Tue Wed Thur Fri	low 6 27699 26605 27085 27085 27258 ws Aon T 27162 28% 25841 0.28 25345 27.9 21854 28.4 4 urly Variation 156 176 195 183 197	.6m T 27.5 29.1 28.4 28.2 28.2 27654 30% 26177 0.286 25596 28.6 21945 29 4 00 109 126 144 143 145	7 14 21 28 27457 29% 25969 0.278 25367 27.8 21707 28.1 5 85 124 113 122 133	27689 26941 27553 28434 Thur F 28670 29% 27214 0.278 26601 27.7 22657 28.3 5 114 153 146 138 152	29.1 30.2 30 29.5 30073 24% 28884 0.228 28205 22.9 24570 23.3 4 195 197 213 208 209	1 8 15 22 29 5at 5 21121 13% 20034 11.1 19338 11.1 16965 10.6 4 662 703 678 662 685	28995 23944 27808 28134 28404 38404 18995 10% 18137 9.3 17643 9 15280 8.6 4 1722 1695 1700 1688 1585	27.8 28.2 29.4 29.6 29.1 29.1 25.1 2556 2424 2468 2234	2 9 16 23 30 20 8 2208 2208 2286 2196 2308 1971	28709 27513 28777 29491 28862 8862 1883 1833 1859 1871 1761 1602	28.3 27.7 28.8 29.6 29.4 1620 1580 1626 1614 1790	3 10 17 24 1573 1494 1548 1546 1926	25188 31595 31392 32117 1512 1334 1523 1539 2036	20.1 24.6 24.8 24.9 1640 1568 1470 1640 2241	4 11 18 25 1727 1692 1749 1715 2395	20452 21789 20795 21446 1853 1903 1978 2004 2578	13 12.2 12.6 12.8 2084 2155 2252 2216 2689	5 12 19 26 A 2003 2081 2226 2242 2452	18918 18316 19054 19692 DT A 26096 24.3 24790 23.4 24188 23.3 20831 23.6 1293 1438 1461 1604 1708	10.3 10.2 9.8 10.1 WT 28638 28.1 27193 27.2 26587 27.2 26587 27.2 22814 27.7 780 910 910 923 1007 1178	580 590 706 729	466 447 543 540	317 348 347 383	264 255 266 295

	6.6m
623	9.2
381	8.8
293	8.5
000	8.8
	AWT
904	28038
23.1	27.1
461	26354
21.8	25.8
084	25997
21.7	25.7
426	23019
21.4	25.5

APPENDIX C

TRAFFMAP AccsMap - Accident Analysis System

Accidents between dates 01/01/2017 and 31/07/2023

2

3

0 1 2

Selection:

Notes:

(79) months

Selected using Manual Selection

Police Ref.	Date	Cas.	Sev.	P2W	Cycs	Peds	Ch	OAPs	Vis.	Manv.	Road Cond.	Time	Location
12170060437	09/04/2017	2	Slight	4	0	0	0	2	Light	Right	Dry	1135	A1041 CAMBLESFORTH ROAD 20M SOUTH OF C328 BARLOW ROAD C
12170139436	07/08/2017	1	Slight	0	0	0	0	0	Light	No turn	Dry	1301	A1041 OUTSIDE THE BLACK DOG PUBLIC HOUSE CAMBLESFORTH S
12180022261	07/02/2018	1	Slight	0	0	0	0	0	Dark	No turn	Dry	1833	A645 BRICKHILL LANE 253 M SOUTH OF MAIN ROAD DRAX SELBY
12180048632	22/03/2018	2	Slight	0	0	0	0	0	Light	Right	Dry	0915	4 COUNCIL HOUSES SELBY ROAD CAMBLESFORTH SELBY
12180097771	02/06/2018	1	Slight	0	0	0	0	0	Light	No turn	Dry	2334	A645 CAMBLESFORTH
1800030	08/07/2018	1	Slight	0	1	0	1	0	Light	Right	Dry	1710	JUNCTION OF A1041 AND BARLOW ROAD CAMBLESFORTH
1900215	29/11/2018	1	Slight	0	0	0	0	0	Dark	Right	Wet/Damp	2121	A1041 SELBY
1900661	21/02/2019	1	Slight	1	0	0	0	0	Light	Right	Dry	1730	A1041 NEAR JUNCTION OF BRIGG LANE
1900912	20/06/2019	1	Slight	0	1	0	0	0	Light	Left	Dry	1545	THE SOUTH GATE DRAX POWER STATION JUNCTION WITH A645
1901394	20/09/2019	2	Slight	0	0	0	0	0	Light	Right	Dry	1030	SELBY ROAD AT JUNCTION WITH HARDENSHAW LANE CAMBLEFOR
2000787	04/09/2020	1	Slight	0	0	0	0	0	Dark	No turn	Dry	2010	A645 ROUNDABOUT AT JUNCTION WITH MAIN ROAD DRAX
2100146	22/12/2020	1	Slight	0	0	0	0	0	Dark	No turn	Wet/Damp	1600	A645 DRAX NORTH YORKSHIRE
2100090	12/01/2021	1	Slight	0	1	0	0	1	Light	Left	Dry	1400	A645 DRAX SOUTHGATE DRAX SOUTH ENTRANCE DRAX SELBY NOI
2200591	15/08/2021	1	Slight	0	0	0	0	0	Light	No turn	Dry	1246	A1041 CAMBLESFORTH SELBY
2200055	24/12/2021	1	Serious	0	0	0	0	0	Dark	No turn	Wet/Damp	2333	NW A645 DRAX LINK ROAD SELBY NORTH YORKSHIRE
2200158	20/01/2022	2	Slight	0	0	0	0	0	Dark	Right	Wet/Damp	0719	AT THE JUNCTION BETWEEN A645 AND CROFT ROAD
2200573	21/04/2022	1	Slight	0	0	0	0	0	Dark	No turn	Dry	2300	ALONG THE A645 BETWEEN GODE AND DRAX IN THE DIRECTION O
Column Totals		21		5	3	0	1	3					

Total number of accidents listed: 17

No. of Accidents

Fine without high winds

6th:

Carriageway Hazards: None

INTERPRETED LISTING

Special Conditions at Site: Place accident reported: None

At scene

Run on:

Accidents between dates	01/01/2017 and 31/	07/2023 (79) months	
Selection:		Notes:	
Selected using Manual Sele	ction		
12170060437 09/04/2017 Ti	me 1135	Vehicles 7 Casualties 2	Slight
E: 463351 N: 427124	First Road: A 1041	Road Type: Single carriageway	Speed limit: 60
Junction Detail: T & Stag Jct		Give way or controlled	C 328
Crossing Control Facilities None with	nin 50m	Daylight	Road surface Dry

Causation Factor: Participant: Confidence: 1st: Failed to judge other persons path or speed Vehicle 6 Very Likely Vehicle 6 2nd: Following too close Possible 3rd: Sudden braking Vehicle 1 Possible Vehicle 7 Possible 4th: Following too close 5th:

V1 WAITING TO TURN RIGHT. V2,3,4,5 STOP BEHIND. V6 M/CYCLE COLLIDES WITH V4 AND V5. V7 DRIVES OVER V6 PILLION PASSENGER CAUSING INJURY. V1 AND V2 FAIL TO STOP. NO COLLISION WITH V1 V2 V3. Occurred on A1041 CAMBLESFORTH ROAD 20M SOUTH OF C328 BARLOW ROAD CAMBLESFORTH SELBY

Vehicle Reference 1	Car	Waiting to turn right
Vehicle movement from SE to NE	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Did not impact
Hit vehicle:	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver	Unknown
Non-stop, not hit	Breath test Driver not contacted	Left hand drive No

Vehicle Reference 2	Car	Going ahead but held up
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Did not impact
Hit vehicle: Hit object in road None	Location at impact Jct Approach Hit off road: None	
Off road: Did not leave carr Non-stop, not hit	Age of DriverBreath testDriver not contacted	Unknown Left hand drive No

Vehicle Reference 3	Car	Going ahead but held up
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Did not impact
Hit vehicle:	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 50	Male
Not hit and run	Breath test Negative	Left hand drive No

Accidents between dates

Selection:

INTERPRETED LISTING

(79) months

Notes:

01/01/2017 and 31/07/2023

29/ 08/2023

Run on:

	10000	
Selected using Manual Selection		
Vehicle Reference 4	Motorcycle over 500cc	Going ahead but held up
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Back
Hit vehicle: 5	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 48	Male
Not hit and run	Breath test Negative	Left hand drive No
Vehicle Reference 5	Motorcycle over 500cc	Going ahead but held up
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Back
Hit vehicle: 4	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 51	Male
Not hit and run	Breath test Negative	Left hand drive No
Vehicle Reference 6	Motorcycle over 500cc	Stopping
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	Skidded	First impact Front
Hit vehicle: 5	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 65	Male
Not hit and run	Breath test Negative	Left hand drive No
Casualty Reference: 1 Vehic	ele: 6 Age: 65 Male	Driver/rider Severity: Slight
Seatbelt: Not Applicable	Not car passenger	Cycle helmet: Not a cyclist
Casualty Reference: 2 Vehic	ele: 6 Age: 63 Female	Passenger Severity: Slight
Seatbelt: Not Applicable	Not car passenger	Cycle helmet: Not a cyclist
Vehicle Reference 7	Motorcycle over 500cc	Going ahead other
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Front
Hit vehicle: 6	Location at impact Jct Approach	-
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 60	Male
NT (11) 1	Breath test Negative	

Breath test

Negative

Left hand drive No

Not hit and run

Run on:

Accidents between dates	01/01/2017 and 31	1/07/2023 (79) months	
Selection:		Notes:	
Selected using Manual Sele	ction		
12170139436 07/08/2017 Ti	me 1301	Vehicles 2 Casualties 1	Slight
E: 463789 N: 426353	First Road: A 1041	Road Type: Single carriageway	Speed limit: 60
Junction Detail: Not within 20m of ju	inction		
Crossing Control Facilities None with	nin 50m	Daylight	Road surface Dry
Fine without high winds		Special Conditions at Site: None	
Carriageway Hazards: None		Place accident reported: At scene	

	Causation Factor:	Participant:	Confidence:
1st:	Failed to look properly	Vehicle 2	Very Likely
2nd:			
3rd:			
4th:			
5th:			
6th:			

V1 TRAVELLING S/W ON A1041 VEH 2 TRAVELLING IN THE OPPOSITE DIRECTION ATTEMPTED TO OVERTAKE TRACTOR IT WAS FOLLOWING BEHIND AND COLLIDED WITH V1

Occurred on A1041 OUTSIDE THE BLACK DOG PUBLIC HOUSE CAMBLESFORTH SELBY NORTH YORKSHIRE

Vehicle Reference 1	Car	Going ahead other
Vehicle movement from NW to SE	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Offside
Hit vehicle: 2	Location at impact Not at, or within 20M of Jct	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 25	Male
Not hit and run	Breath test Negative	Left hand drive No

Vehicle Reference 2	Car	Going ahead other
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Offside
Hit vehicle: 1	Location at impact Not at, or within 20M of Jct	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 36	Male
Not hit and run	Breath test Negative	Left hand drive No

Casualty Reference:	1	Vehicle:	2	Age:	36	Male	Driver/rider	Seve	erity: Slight
Seatbelt: Unknown			No	t car passenge	er			Cycle helmet:	Not a cyclist

Run on:

Accidents between dates	01/01/2017 ^{and}	31/07/2023 (79) months						
Selection:		Notes:						
Selected using Manual Selection								
12180022261 07/02/2018 Tin	me 1833	Vehicles 1 Casualties 1	Slight					
E: 466719 N: 426005	First Road: A 645	Road Type: Single carriageway	Speed limit: 60					
Junction Detail: Not within 20m of ju	inction							
Crossing Control Facilities None with	nin 50m	Darkness: no street lighting	Road surface Dry					
Fine without high winds		Special Conditions at Site: None						
Carriageway Hazards: None		Place accident reported: At scene						

	Causation Factor:	Participant:	Confidence:
1st:	Impaired by alcohol	Vehicle 1	Very Likely
2nd:	Careless/Reckless/In a hurry	Vehicle 1	Very Likely
3rd:	Aggressive driving	Vehicle 1	Very Likely
4th:			
5th:			
6th:			

V1 LOSES CONTROL ON RIGHT HAND BEND LEAVES CARRIAGEWAY AND COLLIDES WITH A TREE

Occurred on A645 BRICKHILL LANE 253 M SOUTH OF MAIN ROAD DRAX SELBY

Vehicle Reference 1	Car	Going ahead right bend
Vehicle movement from SE to N	No tow / articulation	
On main carriageway	Skidded and overturned	First impact Back
Hit vehicle: Hit object in road None	Location at impact Not at, or within 20M of Jct Hit off road: Tree	
Off road: O/S & rebounded Not hit and run	Age of Driver37Breath testPositive	Male Left hand drive No

Casualty Reference:	1	Vehicle:	1	Age:	37	Male	Driver/rider	Seve	erity:	Slight
Seatbelt: Not Applicable	le		No	t car passenge	er			Cycle helmet:	Not a	a cyclist

Place accident reported:

At scene

Run on:

Accidents between dates	01/01/2017 and	31/07/2023	(79) months					
Selection:			Notes:					
Selected using Manual Selection								
12180048632 22/03/2018 Tin	me 0915	Vehicles	2 Casualties 2	Slight				
E: 464280 N: 426097	First Road: A 1041	Road Typ	e: Single carriageway	Speed limit: 40				
Junction Detail: Pri Drive		Give way	or controlled	Uncla@00@d				
Crossing Control Facilities None with	in 50m	Daylight	Daylight R					
Fine without high winds		Special Co	onditions at Site: None					

Carriageway Hazards: None

	Causation Factor:	Participant:	Confidence:
1st:	Dazzling sun	Vehicle 2	Possible
2nd:			
3rd:			
4th:			
5th:			
6th:			

V1 TRAVELLING TOWARDS SELBY HAS INDICATED AND WAITING TO TURN INTO A DRIVE WAY WHEN IT WAS HIT FROM BEHIND BY V2

Occurred on 4 COUNCIL HOUSES SELBY ROAD CAMBLESFORTH SELBY

Vehicle Reference 1	Car	Waiting to turn right
Vehicle movement from E to N	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Back
Hit vehicle:	Location at impact Mid Junction - on roundabout or n	nain r
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 28	Male
Not hit and run	Breath test Not requested	Left hand drive No

Casualty Reference	: 1	Vehicle:	1 4	Age: 28	Male	Driver/rider	Severity: Slight
Seatbelt: Worn but	not independen	tly	Not car pas	senger			Cycle helmet: Not a cyclist
Casualty Reference	: 2	Vehicle:	1	Age: 26	Female	Passenger	Severity: Slight
Seatbelt: Worn but	not independen	tly	Front seat				Cycle helmet: Not a cyclist
Vehicle Reference 2			Car				Going ahead other
Vehicle movement from	E to W		No tow / artic	culation			
On main carriageway			No skidding,	jack-knifi	ing or overturning		First impact Front
Hit vehicle:			Location at in	npact	Jct Approach		
Hit object in road None			Hit off road:	Nor	ne		
Off road: Did not leave ca	urr		Age of Driver	r 62			Male
Not hit and run			Breath test	Not	requested		Left hand drive No

Run on:

Accidents between dates	01/01/2017 and	31/07/2023 (79) months	
Selection:		Notes:	
Selected using Manual Sel	lection		
12180097771 02/06/2018	Time 2334	Vehicles 1 Casualties 1	Slight
E: 465638 N: 426099	First Road: A 645	Road Type: Single carriageway	Speed limit: 60
Junction Detail: Not within 20m of	junction		
Crossing Control Facilities None wa	ithin 50m	Daylight	Road surface Dry
Fine without high winds		Special Conditions at Site: None	
Carriageway Hazards: None		Place accident reported: At scene	

	Causation Factor:	Participant:	Confidence:
1st:	Animal or object in carriageway	Vehicle 1	Very Likely
2nd:			
3rd:			
4th:			
5th:			
6th:			

V1 COLLIDES WITH COW

Occurred on A645 CAMBLESFORTH

Vehicle Reference 1	Car	Going ahead other
Vehicle movement from N to S	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Front
Hit vehicle:	Location at impact Not at, or within 20M of Jct	
Hit object in road Any animal (except ridden horse)	Hit off road: None	
Off road: Did not leave carr	Age of Driver 41	Male
Not hit and run	Breath test Not requested	Left hand drive No

Casualty Reference:	1	Vehicle:	1	Age:	41	Female	Passenger	Seve	erity:	Slight
Seatbelt: Worn but not	independentl	у	Front seat	t				Cycle helmet:	Not a	cyclist

Place accident reported:

Elsewhere

Run on:

Accidents betwe	een dates	01/01/2017 and 3	31/07/2023 (79) months	
Selection:			Notes:	
Selected u	sing Manual Sele	ction		
1800030	08/07/2018 Ti	me 1710	Vehicles 2 Casualties 1	Slight
E: 463335	N: 427153	First Road: A 1041	Road Type: Single carriageway	Speed limit: 60
Junction Detail:	T & Stag Jct		Give way or controlled	Unclassified
Crossing Control	Facilities None with	nin 50m	Daylight	Road surface Dry
Fine without high	winds		Special Conditions at Site: None	

Carriageway Hazards: None

	Causation Factor:	Participant:	Confidence:
1st:			
2nd:			
3rd:			
4th:			
5th:			
6th:			

V1 TRAVELLING NW TURNS RIGHT INTO BARLOW ROAD AND COLLIDES WITH V2 ALSO TRAVELLING NW

Occurred on JUNCTION OF A1041 AND BARLOW ROAD CAMBLESFORTH

Vehicle Reference 1	Pedal Cycle	Turning right
Vehicle movement from SE to NE	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Nearside
Hit vehicle:	Location at impact Mid Junction - on roundabout or m	ain r
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 15	Male
Not hit and run	Breath test Not applicable	Left hand drive No

Casualty Reference: 1 Vehicle	1 Age: 15 Male Driver/ride	r Severity: Slight
Seatbelt: Not Applicable	Not car passenger	Cycle helmet: Not known
Vehicle Reference 2	Car	Going ahead other
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Offside
Hit vehicle:	Location at impact Mid Junction - on roundabout or n	nain r
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 27	Male
Not hit and run	Breath test Driver not contacted	Left hand drive No

29/ 08/2023

Run on:

Accidents between dates 01/01/2017 and	31/07/2023 (79) months	
Selection:	Notes:	
Selected using Manual Selection		
1900215 29/11/2018 Time 2121	Vehicles 3 Casualties 1	Slight
E: 463477 N: 426908 First Road: A 1041	Road Type: Single carriageway	Speed limit: 60
Junction Detail: Pri Drive	Give way or controlled	Unclassified
Crossing Control Facilities None within 50m	Darkness: no street lighting	Road surface Wet/Damp
Fine with high winds	Special Conditions at Site: None	
Carriageway Hazards: None	Place accident reported: At scene	

	Causation Factor:	Participant:	Confidence:
1st:	Failed to look properly	Vehicle 1	Very Likely
2nd:			
3rd:			
4th:			
5th:			
6th:			

V1 TRAVELLING TOWARDS SELBY COLLIDES WITH V2 TRAVELLING IN OPPOSITE DIRECTION V3 THEN COLLIDES WITH V3

Occurred on A1041 SELBY

Vehicle Reference 1	Car	Turning right
Vehicle movement from S to N	No tow / articulation	
On main carriageway	Skidded	First impact Nearside
Hit vehicle:	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: O/S	Age of Driver 42	Male
Not hit and run	Breath test Negative	Left hand drive No

Vehicle Reference 2	Car	Going ahead other
Vehicle movement from N to S	No tow / articulation	
On main carriageway	Skidded	First impact Front
Hit vehicle:	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 49	Female
Not hit and run	Breath test Negative	Left hand drive No

Casualty Reference:	1	Vehicle:	2	Age:	49	Female	Driver/rider	Seve	erity:	Slight
Seatbelt: Worn but not	independe	ently	Not	car passenge	r			Cycle helmet:	Not a	ı cyclist

Run	on
nun	un.

Accidents between dates	01/01/2017 an	nd 31/07/2023	(79) months	
Selection:			Notes:	
Selected using Manual Select	tion			
Vehicle Reference 3		Car		Going ahead other
Vehicle movement from N t	o S	No tow / articulation		
On main carriageway		Skidded		First impact Front
Hit vehicle:		Location at impact	Jct Approach	
Hit object in road None		Hit off road: No	one	
Off road: Did not leave carr		Age of Driver 76		Female
Not hit and run		Breath test Neg	ative	Left hand drive No

Place accident reported:

Elsewhere

29/ 08/2023

Run on:

Accidents between dates Selection:	01/01/2017 ^{and}	31/07/2023 (79) months Notes:				
Selected using Manual Selection						
1900661 21/02/2019 Ti E: 464594 N: 425961	me 1730 First Road: A 1041	Vehicles 2 Casualties 1 Road Type: Single carriageway	Slight Speed limit: 40			
Junction Detail: T & Stag Jct		Give way or controlled	Unclassified			
Crossing Control Facilities None with	nin 50m	Daylight	Road surface Dry			
Fine without high winds		Special Conditions at Site: None				

Carriageway Hazards: None

Causation Factor:	Participant:	Confidence:

V001 TRAVELLING ALONG A1041 CAMBLESFORTH, V002 FAILS TO STOP AT THE JUNCTION OF BRIGG LANE AND COLLIDES WITH V001. V002 INITIALLY DRIVES AWAY BUT THEN RETURNS TO SCENE.

Occurred on A1041 NEAR JUNCTION OF BRIGG LANE

Vehicle Reference 1	Motorcycle over 500cc	Going ahead right bend		
Vehicle movement from S to NE	No tow / articulation			
On main carriageway	Skidded	First impact Front		
Hit vehicle:	Location at impact Jct Approach			
Hit object in road None	Hit off road: None			
Off road: Did not leave carr	Age of Driver 34	Male		
Not hit and run	Breath test Driver not contacted	Left hand drive No		

Casualty Reference: 1 Vehi	ele: 1 Age: 34 Male Dr	iver/rider Severity: Slight
Seatbelt: Not Applicable	Not car passenger	Cycle helmet: Not a cyclist
Vehicle Reference 2	Car	Turning right
Vehicle movement from NW to S	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Offside
Hit vehicle:	Location at impact Entering main road	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 85	Male
Hit and run	Breath test Driver not contacted	Left hand drive No

Run on:

Slight Speed limit: 60

Accidents bety	ween dates	01/01/2017 ^{and}	31/07/2023	79) months
Selection:				Notes:
Selected u	using Manual S	Selection		
	-			
1900912	20/06/2019	Time 1545	Vehicles 2	Casualties 1
E: 466441	N: 426400	First Road: A 645	Road Type:	Single carriageway
Junction Detail	T & Stag Ict		Give way or	controlled

Junction Detail:T & Stag JctGive way or controlledUnclassifiedCrossing Control FacilitiesNone within 50mDaylightRoad surface DryFine without high windsSpecial Conditions at Site:NoneCarriageway Hazards:NonePlace accident reported:At scene

	Causation Factor:	Participant:	Confidence:
1st:	Buildings, road signs, street furniture	Vehicle 1	Very Likely
2nd:	Vehicle blind spot	Vehicle 1	Very Likely
3rd:	Failed to look properly	Vehicle 1	Possible
4th:			
5th:			
6th:			

V001 WAS LEAVING DRAX POWER STATION VIA THE SOUTH GATE ACCESS ON TO THE A645, TURNING LEFT. V002 TRAVELLING ALONG THE A645 GOING TO PASS THE SOUTH GATE ACCESS WHEN V001 PULLS OUT AND COLLIDES WITH V002.

Occurred on THE SOUTH GATE DRAX POWER STATION JUNCTION WITH A645

Vehicle Reference 1	Car	Turning left
Vehicle movement from N to E	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Front
Hit vehicle:	Location at impact Entering main road	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 48	Male
Not hit and run	Breath test Negative	Left hand drive No

Vehicle Reference 2	Pedal Cycle	Going ahead other
Vehicle movement from W to E	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Nearside
Hit vehicle:	Location at impact Mid Junction - on roundabout or mail	in r
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 42	Male
Not hit and run	Breath test Not applicable	Left hand drive No

Casualty Reference:	1	Vehicle:	2	Age: 42 M	Iale	Driver/rider Seve	erity:	Slight
Seatbelt: Not Applicable	e		No	car passenger		Cycle helmet:	Yes	

29/ 08/2023

Run on:

Accidents between dates Selection:	01/01/2017 ^{and}	31/07/2023	(79) months Notes:	
Selected using Manual Sele	ction			
T	1020	** 1 ' 1		
1901394 20/09/2019 Ti	me 1030	Vehicles	2 Casualties 2	Slight
E: 463817 N: 426328	First Road: U	Road Typ	e: Single carriageway	Speed limit: 40
Junction Detail: Junction more than 4	arms	Give way	or controlled	Unclassified
Crossing Control Facilities None with	nin 50m	Daylight		Road surface Dry
Fine without high winds		Special C	onditions at Site: None	

Carriageway Hazards: None

Place accident reported: Elsewhere

	Causation Factor:	Participant:	Confidence:			
1st:						
2nd:						
3rd:						
4th:						
5th:						
6th:						
V2 S	V2 STATIONARY WAITING TO TURN RIGHT V1 HAS COLLIDED WITH THE REAR OF V2					

Occurred on SELBY ROAD AT JUNCTION WITH HARDENSHAW LANE CAMBLEFORTH SELBY

Vehicle Reference 1	Car	Going ahead other
Vehicle movement from S to N	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Back
Hit vehicle:	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 24	Female
Not hit and run	Breath test Driver not contacted	Left hand drive No

Casualty Reference: 1	Vehicle: 1 Age: 24 Female	Driver/rider Severity: Slight
Seatbelt: Unknown	Not car passenger	Cycle helmet: Not a cyclist
Vehicle Reference 2	Car	Waiting to turn right
Vehicle movement from S to E	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Front
Hit vehicle:	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 23	Female
Not hit and run	Breath test Driver not contacted	Left hand drive No

Casualty Reference:	2	Vehicle: 2	Age:	23	Female	Driver/rider	Seve	erity: Slight
Seatbelt: Unknown		Ν	lot car passenge	r			Cycle helmet:	Not a cyclist

Place accident reported:

At scene

Run on:

Accidents between dates	01/01/2017 and	31/07/2023 (79) months	
Selection:		Notes:	
Selected using Manual Sele	ection		
2000787 04/09/2020 Ti	ime 2010	Vehicles 1 Casualties 1	Slight
E: 466412 N: 426399	First Road: U	Road Type: 1	Speed limit: 60
Junction Detail: Roundabout		Give way or controlled	Unclassified
Crossing Control Facilities None with	hin 50m	Darkness: street lights present and lit	Road surface Dry
Fine without high winds		Special Conditions at Site: None	

Carriageway Hazards: None

	Causation Factor:	Participant:	Confidence:
1st:	Impaired by alcohol	Vehicle 1	Very Likely
2nd:	Driver using mobile phone	Vehicle 1	Possible
3rd:	Exceeding speed limit	Vehicle 1	Possible
4th:			
5th:			
6th:			

V1 ENTERS THE ROUNDABOUT AND PARTIALLY MOUNTS THE CENTRAL ISLAND THEN EXITS THE ROUNDABOUT LEAVES THE ROAD AND GOES ACROSS GRASS VERGE THEN COLLIDES WITH A TREE Occurred on A645 ROUNDABOUT AT JUNCTION WITH MAIN ROAD DRAX

Vehicle Reference 1	Van or Goods 3.5 tonnes mgw and under	Going ahead other	
Vehicle movement from W to E	No tow / articulation		
On main carriageway	Skidded	First impact Front	
Hit vehicle:	Location at impact Mid Junction - on roundabout or ma	iin r	
Hit object in road None	Hit off road: Tree		
Off road: Nearside	Age of Driver 47	Male	
Not hit and run	Breath test Positive	Left hand drive No	

Casualty Reference:	1	Vehicle:	1	Age:	47	Male	Driver/rider	Seve	erity: Slight
Seatbelt: Unknown			No	t car passenge	er			Cycle helmet:	Not a cyclist

29/ 08/2023

Run on:

01/01/2017 and	31/07/2023 (79) months	
	Notes:	
ection		
ime 1600	Vehicles 1 Casualties 1	Slight
First Road: A 645	Road Type: Single carriageway	Speed limit: 60
unction		
hin 50m	Darkness: no street lighting	Road surface Wet/Damp
	Special Conditions at Site: None	
	Place accident reported: At scene	
1	ection ime 1600 First Road: A 645 unction	Notes: Pection ime 1600 Vehicles 1 Casualties 1 First Road: A 645 Road Type: Single carriageway unction hin 50m Darkness: no street lighting Special Conditions at Site: None

	Causation Factor:	Participant:	Confidence:
1st:	Animal or object in carriageway	Vehicle 1	Very Likely
2nd:			
3rd:			
4th:			
5th:			
6th:			

V1 DRIVING ALONG THE A645 TOWARDS DRAX. V1 HAS SWERVED TO AVOID HORSE IN THE ROAD AND A VEHICLE IN FRONT SUDDENLY BRAKED. DUE TO THE HORSE AND UNKNOWN VEHICLE, V1 HAS MOUNTED THE CURB AND SCRAPPED THE CRASHED BARRIER.

Occurred on A645 DRAX NORTH YORKSHIRE

Vehicle Reference 1	Van or Goods 3.5 tonnes mgw and under	Going ahead other
Vehicle movement from S to N	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Nearside
Hit vehicle:	Location at impact Not at, or within 20M of Jct	
Hit object in road Any animal (except ridden horse)	Hit off road: None	
Off road: Did not leave carr	Age of Driver 37	Male
Not hit and run	Breath test Not requested	Left hand drive No

Casualty Reference:	1	Vehicle:	1	Age:	37	Male	Driver/rider	Seve	erity:	Slight
Seatbelt: Worn and inc	lependentl	ly confirmed	Not	car passenge	r			Cycle helmet:	Not a	cyclist

Run on:

Slight

Accidents between dates		01	01/01/2017 ^{and}		31/07/2023	(7	79) months		
Selection:								Notes:	
S	Selected using Manual Selection								
210	0090	12/0	01/2021	Time	1400		Vehicles	2	Casualties 1
E:	466442	N:	426403	First	Road: A	645	Road Ty	pe:	Single carriageway

E: 466442 N: 426403 First Road: A 645	Road Type: Single carriageway	Speed limit: 30
Junction Detail: T & Stag Jct	Give way or controlled	Unclassified
Crossing Control Facilities None within 50m	Daylight	Road surface Dry
Fine without high winds	Special Conditions at Site: None	
Carriageway Hazards: None	Place accident reported: At scene	

	Causation Factor:	Participant:	Confidence:
1st:	Failed to look properly	Vehicle 1	Very Likely
2nd:	Careless/Reckless/In a hurry	Vehicle 1	Very Likely
3rd:	Dazzling sun	Vehicle 1	Very Likely
4th:	Poor turn or manoevre	Vehicle 1	Very Likely
5th:			

6th:

V1 IS LEAVING PLACE OF WORK, DRIVING ON SITE UPTO JUNCTION OF A645 TO LEAVE THE SITE. ON LEAVING THE SIDE OF DRAX, YOU HAVE TO GO LEFT ONLY FIRSTLY GIVING WAY. V1 THEN LEFT THE JUNCTION ONTO A645 THEN HEARD A THUD. V1 STOPPED, D1 EXITED VEHICLE AND S AW A CYCLIST LYING ON THE FLOOR.

Occurred on A645 DRAX SOUTHGATE DRAX SOUTH ENTRANCE DRAX SELBY NORTH YORKSHIRE

Vehicle Reference 1	Car	Turning left
Vehicle movement from N to W	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Offside
Hit vehicle:	Location at impact Entering main road	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 35	Male
Not hit and run	Breath test Negative	Left hand drive No

Vehicle Reference 2	Pedal Cycle	Going ahead other
Vehicle movement from N to S	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Nearside
Hit vehicle:	Location at impact Mid Junction - on roundabout or m	ain r
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver	Not traced
Not hit and run	Breath test Not applicable	Left hand drive No

Casualty Reference: 1	Vehicle:	2	Age: 76 Mal	Driver/rider	Severity:	Slight
Seatbelt: Not Applicable		No	t car passenger		Cycle helmet: Yes	

Run on:

Accidents between dates		01/01/2017 ^{and}	31/07/2023 (79) months	
Selection:			Notes:	
Selected usin	ng Manual Se	election		
2200591 15	5/08/2021	Time 1246	Vehicles 3 Casualties 1	Slight
E: 463822 N:	: 426326	First Road: A 1041	Road Type: Single carriageway	Speed limit: 40
Junction Detail:	Not within 20m of	f junction		
Crossing Control Fac	cilities None w	vithin 50m	Daylight	Road surface Dry
Fine without high wi	inds		Special Conditions at Site: None	
Carriageway Hazards	ls: None		Place accident reported: At scene	

	Causation Factor:	Participant:	Confidence:
1st:	Road layout (eg bend, hill etc.)	Vehicle 3	Very Likely
2nd:	Failed to signal/Misleading signal	Vehicle 3	Possible
3rd:	Careless/Reckless/In a hurry	Vehicle 3	Possible
4th:			
5th:			
6th:			

V1 HAS STOPPED TO ALLOW A VEHICLE TO MAKE A DELIVERY - V2 CAME TO A STOPE BEHIND V1 - V3 HAS FAILED TO STOP AND HAS COLLIDED WITH V2 WHICH THEN COLLIDED WITH V1

Occurred on A1041 CAMBLESFORTH SELBY

Vehicle Reference 1	Car	Going ahead but held up
Vehicle movement from S to N	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Back
Hit vehicle:	Location at impact Not at, or within 20M of Jct	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 34	Female
Not hit and run	Breath test Negative	Left hand drive No

Vehicle Reference 2	Car	Stopping
Vehicle movement from S to N	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Back
Hit vehicle:	Location at impact Not at, or within 20M of Jct	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver 21	Male
Not hit and run	Breath test Negative	Left hand drive No

Casualty Reference:	1	Vehicle:	2	Age:	21	Male	Driver/rider	Seve	erity: Slight
Seatbelt: Worn but not	independe	ntly	Not	car passenge	er			Cycle helmet:	Not a cyclist

-	
Run	on:

Accidents between dates	01/01/2017 a	nd 31/07/2023	(79) months	
Selection:			Notes:	
Selected using Manual Select	tion			
Vehicle Reference 3		Car		Going ahead other
Vehicle movement from S t	o N	No tow / articulation		
On main carriageway		No skidding, jack-kni	fing or overturning	First impact Front
Hit vehicle:		Location at impact	Not at, or within 20M of Jct	
Hit object in road None		Hit off road: No	one	
Off road: Did not leave carr		Age of Driver 45		Male
Not hit and run		Breath test Neg	gative	Left hand drive No

29/ 08/2023

Run on:

Accidents between dates	01/01/2017 and 31	1/07/2023 (79) months	
Selection:		Notes:	
Selected using Manual Selected	ection		
2200055 24/12/2021 7	Fime 2333	Vehicles 2 Casualties 1	Serious
E: 467458 N: 425526	First Road: A 645	Road Type: Single carriageway	Speed limit: 60
Junction Detail: Not within 20m of j	junction		
Crossing Control Facilities None with	thin 50m	Darkness: no street lighting	Road surface Wet/Damp
Fine without high winds		Special Conditions at Site: None	
Carriageway Hazards: None		Place accident reported: At scene	

	Causation Factor:	Participant:	Confidence:
1st:	Careless/Reckless/In a hurry	Vehicle 1	Very Likely
2nd:	Failed to judge other persons path or speed	Vehicle 1	Very Likely
3rd:			
4th:			
5th:			
6th:			

V001 AND V002 TRAVELLING IN SAME DIRECTION, V001 TRIES TO OVERTAKE V002 BUT MISJUDGES THE MANOUVER AND COLLIDES WITH V002 OFFSIDE. V001 LEAVES THE CARRIAGEWAY AND DRIVER IS EJECTED FROM THE VEHICLE Occurred on NW A645 DRAX LINK ROAD SELBY NORTH YORKSHIRE

Vehicle Reference 1	Car	Overtaking moving vehicle O/S
Vehicle movement from SE to NW	No tow / articulation	
On main carriageway	Skidded and overturned	First impact Nearside
Hit vehicle:	Location at impact Not at, or within 20M of Jct	
Hit object in road None	Hit off road: Tree	
Off road: Nearside	Age of Driver 30	Male
Not hit and run	Breath test Negative	Left hand drive No

Casualty Reference:	1	Vehicle:	1	Age:	30	Male	Driver/rider	Seve	erity:	Serious
Seatbelt: Unknown			Not car pas	senger				Cycle helmet:	Not a	a cyclist
Vehicle Reference 2			Car					Going ahead oth	er	
Vehicle movement from	SE to NW		No tow / artic	culation	1					
On main carriageway			No skidding,	jack-kı	nifing	or overturnir	ıg	First impact O	ffside	
Hit vehicle:			Location at in	npact	N	ot at, or with	in 20M of Jct			
Hit object in road None			Hit off road:	Ν	None					
Off road: Did not leave carr			Age of Driver	r 2	2			Male		
Not hit and run			Breath test	Ne	egative	2		Left hand drive	No	

Crossing Control Facilities

Carriageway Hazards: None

Fine without high winds

INTERPRETED LISTING

Darkness: street lights present and lit

None

At scene

Special Conditions at Site:

Place accident reported:

Run on:

Accidents betwood Selection:	^{een dates} sing Manual Seleo	01/01/2017 and	31/07/2023 (79) months Notes:	
	Ŭ.			
2200158	20/01/2022 Ti		Vehicles 2 Casualties 2	Slight
E: 465002	N: 425692	First Road: A 645	Road Type: Single carriageway	Speed lin
Junction Detail:	T & Stag Jct		Give way or controlled	Unclassi

Speed limit: 60 Unclassified Road surface Wet/Damp

	Causation Factor:	Participant:	Confidence:
1st:	Failed to look properly	Vehicle 2	Very Likely
2nd:	Failed to judge other persons path or speed	Vehicle 2	Very Likely
3rd:	Dazzling headlights	Vehicle 2	Possible
4th:	Poor turn or manoevre	Vehicle 2	Very Likely
5th:			

6th:

V001 TRAVELLING ALONG THE A645, V002 TRAVELLING IN THE OPPOSITE DIRECTION, V002 INDICATES TO TURN RIGHT ONTO CROFT ROAD AND COMMITS TO THE MANOUVERE, AS A RESULT V001 CANT STOP IN TIME AND THE 2 VEHICLES COLLIDE

Occurred on AT THE JUNCTION BETWEEN A645 AND CROFT ROAD

None within 50m

Vehicle Reference 1	Car	Stopping
Vehicle movement from S to N	No tow / articulation	
On main carriageway	No skidding, jack-knifing or overturning	First impact Front
Hit vehicle:	Location at impact Jct Approach	
Hit object in road None	Hit off road: None	
Off road: Did not leave carr	Age of Driver	Not traced
Not hit and run	Breath test Not requested	Left hand drive No

Casualty Reference: 1 Vehicle:	1 Age:	35 Male	Driver/rider Severity: Slight
Seatbelt: Worn but not independently	Not car passenger	r	Cycle helmet: Not a cyclist
Vehicle Reference 2	Car		Turning right
Vehicle movement from N to W	No tow / articulation	n	
On main carriageway	No skidding, jack-k	nifing or overturning	First impact Nearside
Hit vehicle:	Location at impact	Mid Junction - on ro	undabout or main r
Hit object in road None	Hit off road:	None	
Off road: Did not leave carr	Age of Driver		Not traced
Not hit and run	Breath test N	lot requested	Left hand drive No

Casualty Reference:	2	Vehicle:	2	Age:	59	Male	Driver/rider	Seve	rity:	Slight
Seatbelt: Worn but not	independer	ntly	Not	car passenge	r			Cycle helmet:	Not a	a cyclist

Run on:

Accidents between dates	01/01/2017 ^{and}	31/07/2023 (79) months	
Selection:		Notes:	
Selected using Manual Se	election		
2200573 21/04/2022	Time 2300	Vehicles 1 Casualties 1	Slight
E: 466610 N: 426173	First Road: A 645	Road Type: Single carriageway	Speed limit: 60
Junction Detail: Not within 20m of	f junction		
Crossing Control Facilities None w	vithin 50m	Darkness: no street lighting	Road surface Dry
Fine without high winds		Special Conditions at Site: None	
Carriageway Hazards: None		Place accident reported: At scene	

	Causation Factor:	Participant:	Confidence:
1st:	Deposit on road (eg oil, mud, chippings)	Vehicle 1	Possible
2nd:	Exceeding speed limit	Vehicle 1	Possible
3rd:	Loss of control	Vehicle 1	Very Likely
4th:	Impaired by alcohol	Vehicle 1	Very Likely
5th:	Impaired by drugs (illicit or medicinal)	Vehicle 1	Very Likely
6th:	Careless/Reckless/In a hurry	Vehicle 1	Very Likely

DAMIEN THOMAS WAS DRIVING VOLKSWAGEN POLO (BD55HHY) ALONG A645 BETWEEN GODE AND DRAX, IN DIRECTION OF DRAX, WHERE HE HAS COME OFF THE ROAD, MOUNTING THE NEARSIDE GRASS VERGE AND CRASHING THE VEHICLE INTO A NEARSIDE DITCH.

Occurred on ALONG THE A645 BETWEEN GODE AND DRAX IN THE DIRECTION OF DRAX SELBY NORTH YORKSHIRE.

Car	Going ahead right bend
No tow / articulation	
Overturned	First impact Nearside
Location at impact Not at, or within 20M of Jct	
Hit off road: Tree	
Age of Driver 29	Male
Breath test Positive	Left hand drive No
	No tow / articulation Overturned Location at impact Not at, or within 20M of Jct Hit off road: Tree Age of Driver 29

Casualty Reference:	1	Vehicle:	1	Age:	29	Male	Driver/rider	Seve	erity: Slight	
Seatbelt: Unknown			No	t car passenge	r			Cycle helmet:	Not a cyclist	

Registered to: North Yorkshire County Council

Run on:

Accidents between dates	01/01/2017 and	31/07/2023	(79) months
Selection:			Notes:

Selected using Manual Selection

Validated Data

Crash Date:	Wednesday, August 01, 2018	Time of Crash:	5:47:00 AM	Crash Reference: 2018160317646			
Highest Injury Severity:	Slight	Road Number:	A614	Number of Casualties: 1			
Highway Authority:	East Riding of Yorkshire			Number of Vehicles: 1			
Local Authority:	East Riding of Yorkshire			OS Grid Reference: 471954 423872			
Weather Description:	Fine without high winds						
Road Surface Description:	Dry						
Speed Limit:	40						
Light Conditions:	Daylight: regardless of presence	e of streetlights		Map temporarily unavailable.			
Carriageway Hazards:	None			Once map functionality is restored CrashMap will			
Junction Detail:	Roundabout			automatically email an updated report to you.			
Junction Pedestrian Crossing:	No physical crossing facility with	in 50 metres					
Road Type:	Roundabout						
Junction Control:	Give way or uncontrolled						

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/home/Faq

agilysis

Page 1 of 2 21/02/2024 10:30 AM

Vehicles involved

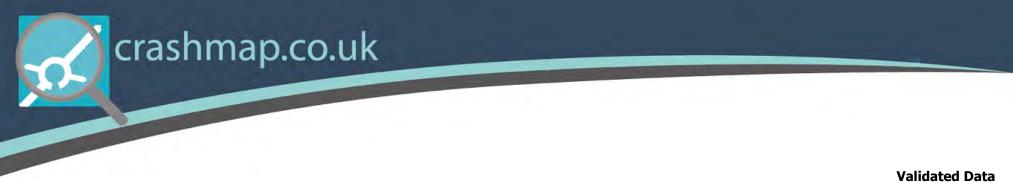
Validated Data

Vehicle Ref	Vehicle Type		Driver Gender		First Point of Impact	-	Hit Object - On Carriageway	Hit Object - Off Carriageway
1	Goods vehicle 7.5 tonnes mgw and over	4	Male	Vehicle proceeding normally along the carriageway, on a left hand bend	Nearside	Journey as part of work	None	None

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
1	1	Slight	Driver or rider	Male	26 - 35	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit *www.crashmap.co.uk/Home/Premium_Services*


Page 2 of 2 21/02/2024 10:30 AM

Crash Date:	Thursday, December 27, 2018	Time of Crash:	12:30:00 PM	Crash Reference:	2018160805163
Highest Injury Severity:	Serious	Road Number:	A614	Number of Casualties:	1
Highway Authority:	East Riding of Yorkshire			Number of Vehicles:	2
Local Authority:	East Riding of Yorkshire			OS Grid Reference:	471753 423881
Weather Description:	Fine without high winds				
Road Surface Description:	Dry				
Speed Limit:	60				
Light Conditions:	Daylight: regardless of presence	of streetlights		Map temporarily un	available.
Carriageway Hazards:	None			Once map functionality is resto	ored CrashMap will
Junction Detail:	Not at or within 20 metres of jur	nction		automatically email an upda	
Junction Pedestrian Crossing:	No physical crossing facility with	in 50 metres			
Road Type:	Single carriageway				
Junction Control:	Not Applicable				

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/home/Faq agilysis

Page 1 of 2 21/02/2024 10:31 AM

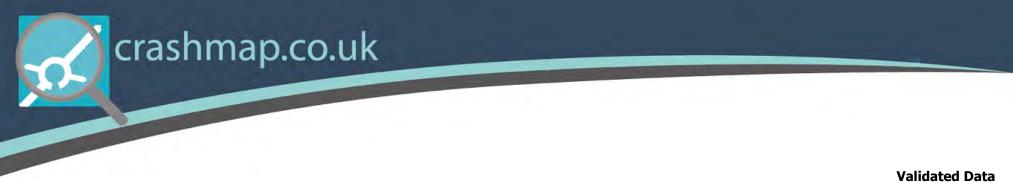
Vehicle Ref	Vehicle Type		Driver Gender		Vehicle Maneouvre	First Point of Impact	· · · · ·	Hit Object - On Carriageway	Hit Object - Off Carriageway
	Goods vehicle 7.5 tonnes mgw and over	4	Male	56 - 65	Vehicle proceeding normally along the carriageway, not on a bend	Back	Journey as part of work	None	None
2	Agricultural vehicle	5	Male		Vehicle proceeding normally along the carriageway, not on a bend	Front	Journey as part of work	None	None

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
2	1	Serious	Driver or rider	Male	26 - 35	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit *www.crashmap.co.uk/Home/Premium_Services*

Page 2 of 2 21/02/2024 10:31 AM



Crash Date:	Monday, December 17, 2018	Time of Crash:	12:30:00 PM	Crash Reference:	2018160808132
Highest Injury Severity:	Serious	Road Number:	A614	Number of Casualties:	1
Highway Authority:	East Riding of Yorkshire			Number of Vehicles:	2
Local Authority:	East Riding of Yorkshire			OS Grid Reference:	470480 423846
Weather Description:	Fine without high winds				
Road Surface Description:	Wet or Damp				
Speed Limit:	60				
Light Conditions:	Daylight: regardless of presence	of streetlights		Map temporarily una	available.
Carriageway Hazards:	None			Once map functionality is resto	
Junction Detail:	Not at or within 20 metres of jur	nction		automatically email an upda	
Junction Pedestrian Crossing:	No physical crossing facility with	in 50 metres			
Road Type:	Single carriageway				
Junction Control:	Not Applicable				

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/home/Faq

agilysis

Page 1 of 2 21/02/2024 10:32 AM

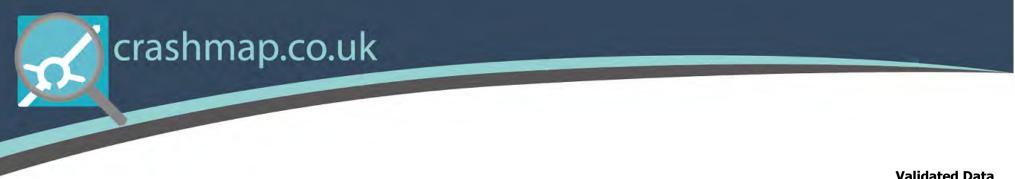
Vehicle Ref	Vehicle Type		Driver Gender		Vehicle Maneouvre	First Point of Impact	· · · · ·		Hit Object - Off Carriageway
1	Goods vehicle 7.5 tonnes mgw and over	4	Male	56 - 65	Vehicle proceeding normally along the carriageway, not on a bend	Back	Journey as part of work	None	None
2	Agricultural vehicle	5	Male		Vehicle proceeding normally along the carriageway, not on a bend	Front	Journey as part of work	None	Lamp post

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
2	1	Serious	Driver or rider	Male	26 - 35	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit *www.crashmap.co.uk/Home/Premium_Services*

Page 2 of 2 21/02/2024 10:32 AM



Crash Date:	Saturday, July 20, 2019	Time of Crash:	8:40:00 AM	Crash Reference: 2019:	160859773
Highest Injury Severity:	Serious	Road Number:	M62	Number of Casualties: 1	
Highway Authority:	East Riding of Yorkshire			Number of Vehicles: 1	
Local Authority:	East Riding of Yorkshire			OS Grid Reference: 47195	2 423808
Weather Description:	Fine without high winds				
Road Surface Description:	Dry				
Speed Limit:	70				
Light Conditions:	Daylight: regardless of presen	ce of streetlights		Map temporarily unavailab	le.
Carriageway Hazards:	None			Once map functionality is restored Cra	
Junction Detail:	Not at or within 20 metres of j	unction		automatically email an updated repo	
Junction Pedestrian Crossing:	No physical crossing facility wi	thin 50 metres			
Road Type:	Slip Road				
Junction Control:	Not Applicable				

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/home/Faq

agilysis

Page 1 of 2 21/02/2024 10:30 AM

Validated Data

Vehicle Ref	Vehicle Type		Driver Gender	Vehicle Maneouvre	First Point of Impact	· · · ·		Hit Object - Off Carriageway
2	Van or goods vehicle 3.5 tonnes mgw and under	10	Male	Vehicle proceeding normally along the carriageway, not on a bend	Offside	Other	None	Lamp post

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
2	1	Serious	Driver or rider	Male	26 - 35	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit *www.crashmap.co.uk/Home/Premium_Services*

Page 2 of 2 21/02/2024 10:30 AM

Crash Date:	Thursday, June 20, 2019	Time of Crash:	10:05:00 AM	Crash Reference:	2019160860588
Highest Injury Severity:	Slight	Road Number:	A614	Number of Casualties:	1
Highway Authority:	East Riding of Yorkshire			Number of Vehicles:	2
Local Authority:	East Riding of Yorkshire			OS Grid Reference:	472188 423768
Weather Description:	Fine without high winds				
Road Surface Description:	Dry				
Speed Limit:	40				
Light Conditions:	Daylight: regardless of present	ce of streetlights		Map temporarily una	vailable.
Carriageway Hazards:	None			Once map functionality is restor	red CrashMap will
Junction Detail:	Roundabout			automatically email an update	
Junction Pedestrian Crossing:	Central refuge - no other contr	rols			
Road Type:	Roundabout				
Junction Control:	Give way or uncontrolled				

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/home/Faq agilysis

Page 1 of 2 21/02/2024 10:27 AM

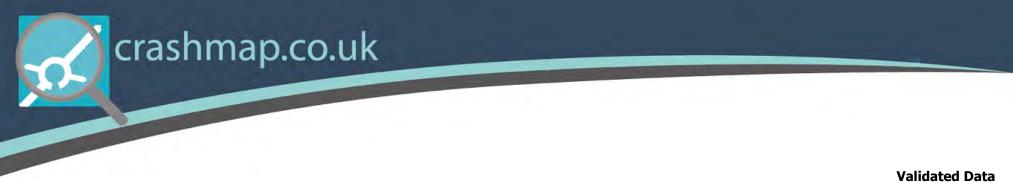
Vehicle Ref	Vehicle Type		Driver Gender		Vehicle Maneouvre	First Point of Impact	-	Hit Object - On Carriageway	Hit Object - Off Carriageway
1	Car (excluding private hire)	1	Female	36 - 45	Vehicle is in the act of turning right	Offside	Unknown	Central island of roundabout	None
2	Good vehicles of unknown weight	-1	Male	Unknown	Vehicle is in the act of turning right	Nearside	Journey as part of work	None	None

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
1	1	Slight	Driver or rider	Female	36 - 45	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit *www.crashmap.co.uk/Home/Premium_Services*

Page 2 of 2 21/02/2024 10:27 AM



Crash Date:	Wednesday, December 23, 2020	Time of Crash:	7:45:00 AM	Crash Reference:	2020161012771
Highest Injury Severity:	Serious	Road Number:	A614	Number of Casualties:	1
Highway Authority:	East Riding of Yorkshire			Number of Vehicles:	2
Local Authority:	East Riding of Yorkshire			OS Grid Reference:	471686 423873
Weather Description:	Fine without high winds				
Road Surface Description:	Dry				
Speed Limit:	40				
Light Conditions:	Darkness: street lights present a	and lit		Map temporarily una	available.
Carriageway Hazards:	None			Once map functionality is resto	ored CrashMap will
Junction Detail:	Roundabout			automatically email an upda	
Junction Pedestrian Crossing:	Central refuge - no other contro	ols			
Road Type:	Roundabout				
Junction Control:	Give way or uncontrolled				

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/home/Faq

Page 1 of 2 21/02/2024 10:31 AM

Vehicle Ref	Vehicle Type		Driver Gender		Vehicle Maneouvre	First Point of Impact	-	Hit Object - On Carriageway	Hit Object - Off Carriageway
1	Good vehicles of unknown weight	-1	Male	Unknown	Vehicle proceeding normally along the carriageway, not on a bend	Nearside	Journey as part of work	None	None
2	Pedal cycle	-1	Male		Vehicle proceeding normally along the carriageway, on a left hand bend	Offside	Commuting to/from work	None	None

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
2	1	Serious	Driver or rider	Male	26 - 35	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit *www.crashmap.co.uk/Home/Premium_Services*

Page 2 of 2 21/02/2024 10:31 AM

Crash Date:	Monday, October 12, 2020	Time of Crash:	12:30:00 PM	Crash Reference:	2020160989220		
Highest Injury Severity:	Slight	Road Number:	A614	Number of Casualties:	2		
Highway Authority:	East Riding of Yorkshire			Number of Vehicles:	2		
Local Authority:	East Riding of Yorkshire			OS Grid Reference:	471582 423856		
Weather Description:	Raining without high winds						
Road Surface Description:	Wet or Damp						
Speed Limit:	60						
Light Conditions:	Daylight: regardless of presence	of streetlights		Map temporarily una	available.		
Carriageway Hazards:	None						
Junction Detail:	Not at or within 20 metres of jur	nction		Once map functionality is restored Crash automatically email an updated report			
Junction Pedestrian Crossing:	No physical crossing facility with	in 50 metres					
Road Type:	Single carriageway						
Junction Control:	Not Applicable						

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/home/Faq agilysis

Page 1 of 2 21/02/2024 10:31 AM

Vehicle Ref	Vehicle Type		Driver Gender		Vehicle Maneouvre	First Point of Impact			Hit Object - Off Carriageway
1	Car (excluding private hire)	7	Male	46 - 55	Vehicle proceeding normally along the carriageway, not on a bend	Front	Other	None	None
2	Good vehicles of unknown weight	-1	Male		Vehicle proceeding normally along the carriageway, not on a bend	Back	Journey as part of work	None	None

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
2	1	Slight	Driver or rider	Male	26 - 35	Unknown or other	Unknown or other
2	2	Slight	Vehicle or pillion passenger	Male	21 - 25	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq To subscribe to unlimited reports using CrashMap Pro visit *www.crashmap.co.uk/Home/Premium_Services*

Page 2 of 2 21/02/2024 10:31 AM